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SUMIMARY

The research summarized by this report was undertaken as a first step

in the development of a system of automated decision aids designed to

facilitate the application of decision analysis to major decisions within

the Department of Defense. "Decision analysis", as used here, refers to

a practical science of decision making that combines the fieids of opera-

tions research and statistical decision theory. Applications of decision

analysis to military problems have demonstrated its potential for assisting

military decision makers. However future application will he limited un-

less automated aids are developed to speed up the decision analysis pro-

cess and allow non-specialists access to the powerful problem solving

tools that are currently available only to a few highly-trained and exper-

ienced decision analysts.

To advance the development of such a system of computerized decision

aids, research was undertaken to develop a decision morphology: a pre-

cise characterization of the logical and analytic steps required to analyze

a wide variety of decisions. This research has nroduced: (1) a charac-

terization of the different kinds of decision situations that arise in

practice and an exploration of the implircations of these characteristics

for automated decision aids; (2) a description of the types of decision

models availahle for analyzing a variety of decision situations; (3) a

description of the process of constructing decision models, and (4) an

identification of several easily understood modelit:p concepts that provide

a basis for designing and constructing a rilot-level system of automated

decision aids. The paragraphs below provide brief summaries of the re-

suits in each of these four areas.

...................................................................... ...... "



A Characterization of Decision Situations

Decision situations differ in three basic respects, each of which

affects the nature of appropriate modeling procedures and associated

computerized decision aids. Decision problems can he characterized by

(1) the nature of the decision environmnt, (2) the preferences ani

resources of decision makers, and (3) the process by which various in-

dividuals interact to reach a decision.

The applicability of various decision analytic procedures depends

on the characteristics of the specific decision being analyzed. For in-

stance, one important characteristic is the role time plays in the deci-

sion. If the basic elements of the decision environment or the relation-

ships among these elements change significantly with time, an analyst must

decide whether or not to use decision imodels with time-varying p.'.ameters.
Since these models are much more difficult to construct and more exp'on-
sive to analyze, dynamic models should be uied only if the explicit rep-

resentation of the time-varyinp aspects of the situations is critical

to determining an optimal decision. Other relevant characteristics of

a decision situation include: the degree of uncertainty present, which

may dictate the use of probabilistic rather than deterministic models;
the complexity and continuity of the environment, which influences the

appropriate size of the model; whether the situation is unique or recur-

ring; the resources affected; and the scope and urgency of the decision,

which determine the appropriate level of resources that should he de-

voted to the development of a decision model.

The characteristics of decision makers define a second respect in

which decision situations differ. For instance, decision makers can dif-

fer according to the complexity of their preferences. One commander might

use a simple measure to guide his decision, such as whether or not his

forces control a strategic location by nightfall. Another commander might

base his decision on a variety of objectives, including not only whether

his forces have gained control, but also the time required to do so, the

casualties suffered, the psychological effect on the enemy, the morale of his

troops, and so forth. Decision makers can also differ In their training

. ý r ~ . . ... ....



and experierce vith quantitative analysis. As a result, decision models

must he adapted to produce results that can be easily uderstood and ac-

cepted by a particular decision maker. Similarly, the nature of decision

models are governed by differences in the level of resources that decision

makers can allocate to problem analysis.

The third major respect in which decision situations differ is the

organizational structure within which decision makers must operate. Organ-

izational structure can be characterized by the number of people involved

i *he decision and the nature of the interactions among them. When there

is oAly one decision maker, a decision model will he concerned primarily

with his alternatives, preferences, and information. However, when there

are two or more decision makers, each must take into nccount the possible

actions of the others. The manner in which interactions among decision

makers are modeled strongly influences both the applicability and complex-

ity of a decision model.

Types of Decision Models

For the purposes of this research, a decision model is any quantita-

tive or logical abstraction of reality that is constructed and analyzed

to help somebody reach a decision. The usual method of characterizing

decision models is by the nature of their components. Virtually all de-

cision models contain one or more of the following components: system

variables, which represent elemenLa. of the decision environment; assump-

tions concerning the sequence or timing of new information about the deci-

sion environment; assumptions concerning the structural linkages or inter-

dependences among system variables; and a specification of the decision

maker's preferences among possible states of the world as represented by

the system variables. The relative emphasis placed on these components

determines the form of a particular model and the types of insights it

* can provice into a decision situation.

In addition, there are several global characteristics that distinguish

decision models. One of these is the relative emphasis in the model on

derivation rather than direct assessment of factors related to the decision.

3
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In some situations it may be difficult to assess directly the implications of

complex interactions among elements of the decision environment. However,

* ~doing so may significantly simplify an analys~is. The size and czomplexity

of a decision model are also important global thara~teristies that deter-

mine the model's applicability. Another common way of ctiaracterizirg a

decision model is in terms of its mathematical properties, such as whether

the system variables are deterministic or probabilistic, continuous or

discrete, static or time-dependent, and constrained or unconstrained.

Although these characteristics need not be of great concern to the decý:qon

maker, they can be crucial in determining the feasibility of analyzing

a model and its usefulness in describing the decision environment.

The Process of Modeling and Analyzing Decisions

To construct and analyze a decision model, it is necessary to carry

out a number of logical procedurea. They can be broken into two broad

categories: modeling and analysis. The modeling process Is primaril.y

concerned with defining the various components of the decision model. The

analysis process involves solving the model to determine its implications

for decision making, and computing the effects of changing assumptions

inherent in the model.

The modeling process is composed of two components: structuring and

assessment. In structuring, the decision maker's alternatives, the pos-

sible outcomes thtit could result from his actions, the external factors

affecting the outcome, and the linkages among the model variables are

identified. During the assessment process the existing sta,,e of infor-

mation about components of the decision model is quantified and the deci-
r sion maker's preferences among possible outcomes, the Lime at which they

might occur, and the risks associated with each alternative are specified.

The process of model analysis consists of model solution, sensitivity

analysis, and determining the value of gathering additional information.

The solution of the model conhistb Of finding the optimal decision alter-i native and the corresponding probability distribution of possible outcomes.

* ~Sensitivity analysis is used to determine the relative i.mportance of model

4
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components and thus guides efforts to revise and improve the model. Deter-

mining the value of information provides the basis for decisions to gather

new information, which can be used to update or restructure the model.

The various modeling and analysis procedures are used iteratively to

develop a decision model. Thus at each stage in the development of a de-

cision model, the model itself is used to determine which of its compo-

nents should be modified and whether new information about the decision

environment should be gathered.

Concepts and Tools for Decision Moiling

The model building process often benefits from the use of granhical

aids such as decision trees, flow charts, and block diagrams, and alge-

bhaic representations such as mathematical equations and computer programs.

Therefore, an efficient decision aiding system should provide user commu-

nication in a langtiage that facilitates the use of both graphical and alge-

braic aids. As a first step towards Identifying such a language, research

was conducte.I to determiie the underlying concepts common to all decision

model representations.

An important conclusion is that all models, regardless of whether

they are represented in graphical or algebraic terms, are composed of two '1
types of fundamental building blocks: "entir&eP" and "operators". Enti-

ties are variables that describe the state of the decision environment or

the decision maker's perception of the environment. Operators are direc-

tional functions that take entities as inputs and produce other entities

as outlputs. The purpose of operators is to describe the way in which en-

titles are modified by the environment and the manner in which they are

related. As an example, radar coverage and weather conditions might be

entities in a decision model of an air strike. A functional relationship

that relates weather conditions to radar coverage could be regarded as a

model operator.

f Decision models are produced by connecting arpropriately defined en-

tities and operators. In small models it is typical for specification of

the links between ,operators and entities to be included in the definition

I
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of the operators. However, the definitions of entities and operators,

and the manner in which they are connected can be specified separately.

Topological connections among operators and entities are specifed by "con-

nection rules". These rules determine exactly which entities are the in-

puts and outputs of each operator

When operators and entities are linked together, either individ-

ually or through the use of connection rules, the result is a computa-

tional graph. Computational graphs can he classified according to the I
degree to which they are interconnected. For example, the connections

in some graphs contain loops. A computational graph contains a loop if

two entities are connected by two or more paths with oprositely directed

operators. If a computational graph contains no loops it is called a tree.

An example is a decision tree. In a decision tree the entities are the II

nodes of the tren, the linkages are the branches, and the operators are

l the rules for evaluating the tree.

Specific types of graphs are useful as applied modeling tools. One

such tool is a function graph--a graph composed of entities that are alge-

braic or logial variables, and operators expressed in the form of equa-

tions. Working with a decision maker, an analyst can construct a deter-

ministic decision model in the form of a function graph. The advantage

of working with a fuction graph is that the rules for its construction

may be generated in an orderly way from answers thr. decision maker supplies

to a set of specific and well-defined questions. A similar sort of graph,

called an influence diagram, can be used to construct a model of the probabi-

listic relationships among elements of a decision problem. This modeling

tool can be used to greatly reduce the number of probability assessments and

amount of probabilistic processing required to analyze a decision model.

Although further research is needed to gain a complete understanding of the

properties of these applied modeling concepts, they have already proven
useful in the analysis of several complex decision problems.

It appears that function graphs and influence diagrams may repre-

sent a significant advancement in the area of computer-aided decision

modeling. These tools allow an individual to represent his or her know-

ledge regarding model structure in a way that is intuitivef and, at the

""......... . -........- , .- . "
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same time sufficiently precise to serve as a communication medium for a

computer. Thus there is hope that computerized decision aiding systems

can be developed that provide the military executive with powetrful tools

for improving his decision making ability without requiring him to learn

specialized computer languages that are foreign to his present way of

thinking.
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I INTRODUICTIOtN

A. The Purpose and Context of this Research j
The research described in this report was conducted in response to

a demire on the part of the Defense Advanced Research Pe'jects Agency and

the Decision Analysis Group of SRI to develop automated decision aids that 1
would facilitate the application of decision analysis to major manngement

* decisions within the Department of Defense. When this research began,

several computer programs had been written at SRI and elsewhere to deal

with various aspects of analyzing decision problems, such as elicitinpg

probability distributions or carrying out decision tree caloulations.

However, these computer programs dealt only with certain limited aspects

of the decision analysLs process and, for the most part, they required

the user to be familiar with computer programming. The computer programs

were not well stifted to the needs of decision makers who lacked tratining

in decision analysis and computer programming. In fact, computer programs

developed by one group of decision annlysts were seldom used by other an-

alysts because the programs often contained proredures and limitations

specific to the needs of the analysts who wrote them.

Since the SRI Decision Analysis Croup had already written several

general purpose computer programs for generating and analyzing decinin_

trees (and other tree structures), it was necessary to decide wthther Ole

research would be devoted to expanding and generalizing the existing aids,

or to investigating more generally the procedures used to describe nnd

analyze decision problems and the ways in which automated decision aids

could help analysts and decision makers carry out these procedures. It

was decided that incremental improvements in the existing software for

decision analysis were unlikely to produce decisior aids beneficial to aI wide variety of users and comprehonsive enough to dent with all of the

procedures used to analyze decision problems.
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Theefoethis research project was undertaken. not with the aim

ofpouigspecific atmeddc'cision aids, but rather with the objec-

tive of characterizing all of the logical and analytical steps required
toanalyze a wide vatiety of decisions in a manner that would facilitate

the esin ad ipleenttio ofautomated decision aids. Since this
charcteizaiondeal prmarly iththe general procedures used to an-

alz eiinand ntwhspcfccomputer programs, we have chosen

to cll t a"decision morphology" rather than use ft more computer-oriented

term like "algorithmic' language".

To achieve the objectives oZ this research effort, a number of re-

lated research tasks were undertaken. The first t.-k was a characteri-

zation of various possibl~e der'ision environments and an exploration of

tite implications of different types of decisions for the design of appro-

priate automated decison aids. The next step was an investigation of the

types of decision models available for analyzing the decision situations

defined In the first tnak. The hird task was an identification of the

steps required to construct and analyze decision models. From the results

of these three tasks, several general modeling concepts were identifiedI which could provide the basis for it pilot-level system of automated dcci-
sioti aids.

Although the modeling concepts described in this report appear to

provide it way to conceptualize and analyze a wide variety of decision prob-
leffiF, they should be applied to several renlistic decision analyses to

test their practirnality and general ity. With additional research it may

be possible to generalize the specific modeling tools discussed in t~his

report to the point where they will be approl~riate for almost all deci-

sion modeling tasks. However, this may require the? development of new

whih te cncets escibd hre re ot deqateorappropriate. At

thesam tiefuture re,.earch shoutd be directed toward unifying the

mdlntolinoa single, integrated system capable of dealing withI
alaspects oftedecision modeling process.

10
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B. The Importance and Difficulty of Creating a Decision Model

MIost of the existing computer programs for decision analysis deal

with decision tree calculations, or the elicitation and processing of

subjective probabilities. Since decision trees and probability dlic-

tation are basic elements of decision analysis, it would seem logical

that decision aid& designed to help an analyst in these areas would be

among the most useful and dealu'b.e).. However, in applying decision

analysis to many different types of decision problems, the SRI Decision

Analysis Group iias found that probabilistic processing and elicitation

are not the areas in w~aich an analyst or decision maker can benefit

most from automated decision aids.

At the beginning of this research project cachi of the project lenders

In the Decision Analysis Group was asked to review the projects that hie

had conducted and determine those aspects of the analysis that had been

the most difficult and tline-consuminp. The consensus of this group was

that the most difficuilt part oif conduct ing n1 dec is~on analysis--and the

arva that could benefit most from automated dec ision aids--was ConE~tr(uc-

ting it decision model that captured the essential elements of the dcci-

sic'n uander consideration. Probability elicitation, pro~babilistic pro-

cessing, and the evaluat ion of decision treers all ranked below model

development in terms of the amount of effor'z required to carry out the

procusn and the potential usefulness of auto fated decision aids.

Admitted ly, this informal suirvey covered only the experiences of one

group of decision analysts. As a result, the importance assigned to de-

rision modeling may be a refleetion of the methodological approach of the

k ~StU D~ecision Anatysis Group as opposed to approarlhes used by other annlysts.

However, the survey covers a very broad range of decision problems, in-
cluding dlecisions in both ýhe public and private sectors, decisions char-

acterized by varying degreeca of complexity and uncertainty, and decisions

ranging from specific resource rillocations to broad questions of public

policy. Furthermore recent research carried out by SRI for the Office of

Nava Reearc onthedevelopment of operational decision aids for task

forc comanershasconfirmed the importance of decision modeling in the

analstoof iliarydecision problems..
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It is easy to see why the development of decision models plays an im-
portant part in the decision analysis process. Decision models a.low an-

alysts and decision makers to organize and rank .n importance the many

complex factors associated with major decisions. By considering each part

of the model in turn an analyst can divide a major decision problem into

a series of smaller, more manageable problems. At the same time a model

can be used to determine the relative importance of the various elements

of the decision problem. All too often decision makers become absorbed

in one aspect of the decision problem and neglect other aspects that are

equally, if not more, important. Even a simple decision model can show

quickly which elements of the problem deserve the most attention by vir-

tue of their relative influence on the final outcome. Perhaps equally

important is the ability of a decision model to act as a vehicle for com-

municat ion. An explicit model of all the elements of a complex decision

allows everyone concerned to understand and contribute to the decision

logic.

C, The Scope of this Report

This research report is not -i textbook on decision analysis. Rather

it Is an exposition of those concepts, procedures, and models that should

he inclided in a comprehensive system of decision aids. This report is

concerned with the application of decision analy:is rather than with the

development of decision theory. Furthermore, it does not attempt to de-

scribe all the ways that people have conceptualized and applied decision

analysis; rather it reflects the experience of the SRI Decision Analysis

Grroup. IHowever, the discussion of decision analysis contained in this

rport Is i-,tended to be sufficiently general to encompass most of the

approaches taken to applying decision analysis.

It is assumed that the reader is familiar with the fundamentals of

decision analysis. These are described in sev,?ral publications [3,4,12,131*.

However a detailed understanding of decision theory is not required to

understand most of this material.

*Fibares in brackets correspond to the references.
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D. Overview of the Research Rirort

Chapter II discusses the characteristics of different decision prob-

lems, decision makers, and decision processes, together with the implica-

tions of these characteristics for decision modeling. Chapter III outlines

the different types of decision models, first by discussing the different

components that can appear in various decision models and second in terms

of more general characteristIcs of Lhe entire model. Chapter IV deals with

the process by which decision problems are modeled and analyzed. This Is

the process that will be facililzated by the development of automated deci-

sion aids. Chapter V contains the most novel findings of this research

effort: several decision modeling concepts that can be understood by

decision makers and are suitab~e for computer Implementation. These con-

ceptual tasks can be applied in the context of the decision modeling pro-

cess described in Chapter IV to produce the types of decision models dis-

cussed in Chapter I11. The concepts presented in Chapter V provide a basis

for designing and constructing n pilot-level system of automated decision

aids.

13
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117 TYPES 0- DECISION PROBLEMS: IMPLICATIONS FOR MODELING

Whether or not an automated decision aid Is useful for analyzing a

decision problem depends to a large extent on the characteristics of the

decision being analyzed and the decision maker for whom the analysis Is

conducted. It is doubtful that any single decision aid will be equally

applicable to all of the decision problems that one might wish to analyze.

Furthermore, a decision aid that is helpful to one decision maker might

not be useful to a decision maker who has a different level of experience

in analyzing decisions or who must operate within a diferent organiza-

tional structure. Developing a comprehens.ive system of automated decision

aids requires understanding the range of decision problems to which it

would be applied.

It would be difficult to enumerate all of the different types of de-

r Union problems that one might wish to analyze. However, there are certain
characteristics of decision problems and decision makers that clearly in-

fluence the appropriateness of various modeling procedures and related com-

puterized decision aids. These characteristics and their implications

for modeling and analyzing decisions are discussed In this section.

In attempting to define the different types of decision problems,

one must be careful to distinguish between the chara&cteristics of the

decision environment an-i the characteristics of the model that is devel-

oped to analyze the decision. A statement such as, "That is a 1ino'ar

programming problem" may be more descriptive of the model used to analyze

n decision than it Is of the aecision environment. Since models are by

definition abstractions of reality, It is quite appropriate that a decision

model and the situation It represents have different properties. For ex-
ample, an inherently non-linear decision problem could be represented by

a linear model. The discussion that follows deals with the characteristics

* of decision environments, not decision models. although some of the same

characteristics could be used to describe models.
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The list of characteristics described in this section is not exhaus-

tive. There are many ways to characterize decision problems and decision

makers, but some attributes are more useful descriptors than others. Taken

as a whole, the following characteristics provide the dimensions for de-

scribing any particular decision problem.

A. Characteristics of Decisions and Decision Environments

Some of the major determinants of the appropriateness of various de-

cision analytic procedures are the physical characteristics of the environ-

ment as they are perceived by the decision maker. A decision model--and the

procedure used to build it--need not have exactly the same characteristics

as the decision environment, but the two obviously should be closely related.

The following sections outline the implications of various characteristics

of the decision environment for developing an appropriate model.

1*. Time Dependence (Static vs. Dynamic Environments):

There are many decision problems in which the basic elements of

the decision environment, and even the relationships among these elements,

change with time. Models with time-varying parameters can be used to rep-

resent such situations, but dynamic models are inherently more difficult

r to analyze than static models. When attempting to model a time-varying

decision environment, an analyst must determine whether variations with

time ,•ust be represented explicitly or whether the time-dependent charnc-
teristics of the environment can be averaged or aggregated so that they

can be represented by a static model. Fortunately, dynamic decision ,uiob-

lems can often be adequately approximated by models with sta.tic parameters

or functional relationships. One way to simplify the time dependence in

i model is to repres&nt time as a series of discrete intervals. In that

way the value of model parameters In each time interval can be considered

as separate quantities related to each other by functions that describe

how they change from one time period to another.

In some ways time can be considered a model parameter just like

any other element of the model. The dependence of some quantity on time

can be modeled in the same manner as its dependence on other model parameters

16
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Assumptions about the level of detail required to specify time are similar

to those for other model parameters.

However, time possesses certain characteristics that distinguish

it from other model parameters. It provides a natural index with which

other model parameters can be identified. It also defines the order in

which decllons are made and states of information are changed when these

elements are functions of time.

2. Sequence of Decisions and Information States (Sequential vs.

Nonsequential Decision Environments):

Een if the major elements of a decision problem and their inter-

relationships arp not functions of time, it may be necessary to investi-

gate the implications of making a decision based on several possible states

of information. For example, a military commander may decide on the best

way to position his forces without knowledge of the enemy's position, and

then find it necessary to reconsider the same decision after receiving

new information from his intelligence sources. In fact, he could find

himsel . making a whole sequence of resource allocation and reallocation

decisions based on changing states of information, even though the config-

uration of enemy forces was not actually changing with time. Thus, chang-

ing states of information can occur in both static and dynamic decision

environments.

Changes in the state of information can affect both the estimates

of parameters in a decision model and the structure of the model itself.

Models in which the structural. relationships among parameters depend on

changing states of information tend to be complicated and difficult to

specify.

Explicit consideration of changing information states is usually

required in a decision model when there is a sequence of decisions to be

made at the same time that the information is chunging. In this case it

is necessary to analyze each decision for each of the possible information

states that might exist when the decision must be made. Sequential deci-

sions can be modeled efficiently if one can identify repetitive fr similar

j. information states and combine them to reduce the size of the model.

17
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Sequences of decisions can themselves lead to changing states

of information, because the decisions produce new information about the

environment or cause significant changes in the environment itself. De-

cisions that produce new information about the environment are generally

It information-purchasing decisions, such as initiating an intelligence

activity or conducting research to determine the operating characteris-

tics of a new weapons system. Other decisions are made with the intent

of directly influencing the environment and producing specific results.

As changes in the decision environment take place, the decision maker

often receives new information that changes his view of the problem.

3. Uncertainty (Probabilistic vs. Deterministic Decision

Environments):

Decision makers almost never know the exact consequences of

choosing an alternative at the time that they make a decision. In an

attempt to reduce the uncertainty associated with their decisions, deci-

sion makers will often allocate significant portions of their resources

to gathering information.

Many attempts have heen made to analyze uncertain decision

environments with deterministic models. However, the use of determin-

istic models often leaves the decision maker wondering whether they ade-

quately describe all of the contingencies that might occur. Determin-

istic models are particularly inappropriate for information-purchasing

decisions, since the objective of these decisions is to reduce uncertainty

about the environment. Deterministic models do a poor job of measuring

changes in the level of uncertainty.

Since probabilistic models are more difficult to process than

deterministic models, the question that must be answered in any decision

modeling effort is: To what extent should uncertainty be modeled ex-

plicitly? Although various modeling techniques have been developed to

help answer this question (such es assessing probability distributions

only for those model variables that have the greatest effect on the mod-

el's output), the appropriate level of probabilistic modeling depends

18
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on the time and resources available for modeling as well as on the nature
of the decision environment. Often a deterministic model can be used to

gain an initial understanding of a decision problem before a more complete

2. probabilistic model is developed. In fact, deterministic models often

evolve into probabilistic models of the same situation as model variables

and relationships are redefined in probabilistic terms.

One of the primary reasons for modeling uncertainty explicitly

is that human intuition is notoriously poor at determining the effect of

interactions among uncertain quantities. Individuals tend to think about

decision environments in deterministic terms, even though they recognize

tiat there are important elements of the problem that are beyond -heir

control and about which they have limited information. For this reason

the probabilistic model can produce insights that are not obvious from

intultive reasoning.

4. Complexity (Simple vs. Complex Decision Environments):

Decision environments can range from those with a few basic
elements to those comprised of large numbers of interrelated components.

However, complex decision problems do not always lead to complicated de-

cision models. Often many of the components inherent in a decision situ-

ation can be aggregated to form the variables of a simple model. For

example, economists regularly model the many millions of business trans-

actions that occur each day in the national economy in terms of a few

aggregate parameters like gross national product, personal consumption,
i and investment.

Trying to determine the proper level of simplification and

aggregation to use in a decision model is probably the most difficult

part rf modeling. On the one hand, simplified models are relatively

eacy to analyze and explain to others. However, the more specific ele-

ments of the decision environment are aggregated into a few global param-

I eters, the more difficult it becomes to define exactly what those param-

eters mean. Furthermore, oversimplifying a decision model can destroy

one of the model's primary benefits; its ability to break a decision

19

4 i• l ý . .X ! Z
..



down Into its component parts and let the decision maker deal separately

with each of the components.

The complexity inherent in a decision situation can itself be

a source of uncertainty. If it is necessary to conceptualize and model

the situation in terms of a relatively small number of aggregate param-

eters, the decision maker may find himself uncertain about the manner

in which the aggregate parameters interact even though he might be quite

knowledgeable about the many detailed interactions that occur in the en-

vironment. In the process of developing a simplified model of a complexA

decision situation it may be necessary to introduce uncertainty Into thle

model to avoid a more detailed analysis.

5. Continuity (Continuous vs. Discrete Decision Environments):

In some decision situations there are only a few discrete niter-

natives available. For example, an officer in charge of air defense might

have to decide which of three available weapons systems to assign to an

attacking enemy aircraft. In other situations, thle decision maker can
select any value over a continuous range, for example when one is detei-

mining the proper elevation of an artillery piece. Similarly, elements

of tile decision environment that are beyond the decision maker's control

can be classified according to whether they take on only a few discrete

values or can vIary over a specified range.

In reality, the distinction between continuous and discrete

quantities is somewhat blurred. When trying to decide what percentage

of his forces to hold in reserve, the commander of a large force night

have so many discrete alternatives that his choice is essentially one (if

selecting a fraction of his force on a continuous scale of zero to 100%.

This distinction may seem subtle, but It has a major impact on thle nature

of the model used to analyze the decision.I. If the decision environment to characterized by essentially

continuous quantities, such as economic costs and benefits, the rela-

tionships among these quantities can often be modeled by continuous func-

tions or equations. Alternatively, if major elements of the decision

20
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environment are inherently liscrete, their interrelationships are usually

represented by discrete operators such as matrices, difference equations,

or a detailed enumeration of the values of a certain parameter given all

of the possible combinations of the variables upon which it depends. A

decision tree can be viewed as an example of the latter type of trans-

format ion.

Whether a particular decision is modeled with continuous or

discrete quantities depends in part of the level of aggregation inherent

in the model. One way to simplify a decision model is to approximate the

continuous quantity with a variable that takes on only a few represent-

ative values. For example, it might be sufficient to model possible states

of the weather in terms of sunshhue, rain, or snow even though there are

many possible amounts and types oi precipitation. Decision environments

characterized by a high degree of complexity are often represented by dis-

crete decision models In order to minimize the size of the model and the

analytical effort required to solve it.

6. Uniqueness (Unique vs. Repetitive Decision Environments):

The applicability of various decision modeling techniques is

partially determined by the frequency with which similar decisions must

be made. Many of the methods of classical statistics may be invoked when

dealing with repetitive decisions, such as when to reorder parts for an

inventory. Furthermore, the common elements of repetitive decisions can

be analyzed and modeled prior to the time that a decision needs to be made.

This prior analysis makes it possible to specify and even automate decision

rules so that the decision can be made on a routine basis. As a result,

repetitive decision models tend to be delegated to subordinates even

though the decisions may be extremely impcrtant to the organization. The

allocation of weapons systems to fleet defense is an example of an impor-

tant, repetitive decision that is delegated to specially-trained, subor-
dinate decision makers.

Unique decisions require both the development of a new deci-

sion model and a representation of states of information based on little,( 21
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if any, statistical data. In this case both the model structure and the

values of model variables must rely to a large extext on subjective esti-

mates. The analysis of unique decisions is primarily focused on gaining

an understanding of the problem rather than fine-tuning a model to the

point where it can be used routinely and efficiently for dealing with

similar decision situations.

7. Resources Affected by a Decison (Major vs. Minor Decisions):

The extent to which a decision model is developed is partially

determined by the scale of resources affected by the decision. There

are two resource levels that characterize the decision environment: the
range of outcomes that might result from the decision, and the level of

resources allocated by the decision maker. The level of resources allo-

cated need not determine the importance of the outcomes. Even if the

decision maker has limited resources at his disposal, he may be in a

position to influence events of major importance. For example, a small

but strategically located military unit may have more influence on the

outcome of a battle than other units with more resources at their dis-

posal in inferior positions.

It is worthwhile expanding a decision model whenever the cost

of the additional effort is outweighed by the benefits that are likely I
to occur from a deeper understanding of the decision environment. As

the scale of resources affected by the decision goes up, so do the bene-

fits that can be expected to accrue from the insights produced by addi-

tional modeling. Thus, formal decision models generally find application

in the analysis of major decisions involving significant levels of re-

sources, while decisions with less important consequences tend to be

made on an intuitive basis.

8. Scope of Decision (Specific vs. Policy Decisions):

Some decisions deal with specific resource allocations. Other
decisions are designed to set policy and give guidat ce to those who must

make specific decisions. Models of policy decisions tend to be at a more

aggregate and less detailed level than those of the specific decisions"

22

•i• " 'i !• i• !ii•]ili................................... "... .. !

-- •!L~ ~ ~~ ai;•:i' :-."



for which they provide policy guidelines. However, in the course of mod-

eling a policy decision, it may be necessary to analyze specific decisions

that might be affected. For example, when setting policy as to how his

forces should respond to various enemy actions, a commander may wish to

analyze briefly the decisions that may be faced by his subordinates.

The effect of policy decisions is to define the objectives

j that should be used by others in analyzing specific decisions, thereby

simplifying the decision models needed for the relevant specific deci-

sions. As a result, models of policy decisions must often incorporate a

more detailed consideration of complex preference issues than do models

of specific decisions.Ii
Policy decisions are often used to coordinate the decision-making

activities of several individuals or organizational subdivisions. This

means that models of policy decisions often must take into account the
interactions of several decision mnakers. This requirement tends to com-
plicate the analysis and expand the size of the decision model, even

though the model deals primarily with aggregate parameters. Furthermore,

since policy decisions are usually designed to give guidance to a number

of subordinate decision makers, it is usually necessary to model explicitly

the sequence of information states associated with specific decisions.

This requirement also tends to expand the size of models dealing with

policy decisions.

9. Urgency (Planning vs. Crisis Decision Environments):

The time available for making a decision has a significant

effect on the kind of modeling that is possible. If a decision must be

made immediately, detailed explicit modeling is not possible. However,

the question of how soon a decision must be made is itself usually a

decision. Even though the cost of delaying a decision is high, it may

be wise to spend some time carefully considering its implications. A
0 bad decision made hastily may be worse than a delayed decision.

It is often p.dsible to anticipate and even model at least

some elements of a crisis decision before the crisis occurs. Many crisis

23
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decisions can be reduced to manageable proportions if those elements of

the problem that can be anticipated are subjected to careful analysis be-

fore the crisis Gccurs. For example, a naval cummander considering the

possibility of an enemy submarine attack could develop a model of the de-

cision he would face In that situation, including such known parameters

as the speed and armaments of his ships. The use of such a partially pre-

structured model would make it possible for him to analyze quickly a spe-

cific combat situation by updating the model with a description of the

situation at hand.

There will always be some urgent decisions that cannot be anti-

cipated. Because of tile limited time avoilable, models for such decisions

tend to be composed of a small number of aggregate parameters that de-

scribe only tile most important elements of the problem. Tile main purpose

of such models is not to give the decision maker a detailed understardIng

of the consequences of the decision, but rather to help him sort out the

maJ•or elements of tile decision and be nure that nothing important In over-

I ookc(d.

B. Characteristics of Decision Makers

Since decision models are relevant only if they are put in terms that

are meaningful to the decision maker, the characteristics of tile deci-

Rion maker are as Important as those of the decision environment In deter-

mining the nature of an appropriate model. The implications of various

characteristics of aecision me',ers for modeling and analyzing decisions

are discussed in the following paragraphs.

1. Complexity of Preferences (Simple vs. Complex Preferences):

A problem that often characterizes decisions, especially those

in tile public sector, is the problem of determining the criteria with

which to judge the outcome of a decision. Analyses of financial decisions

are often based on the assumption that the objective Is to minimize the

net cost or maximize the net profit that results from a particular deci-

sion. Yet quite often the financial decision maker is concerned about

many other things besides profit and loss: the effect of the decision on
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the organization's public image, the internal politics of the organiza-

tion, the decision's effect on morale, and the possibility that a bad out-

come could jeopardize the decision maker's career. Obviously preferences

like thtfse are difficult to quantify. Military and public sector decision

problems, which often involve such basic considerations as the value of

human life, contain preferences that are even more difficult to quantify.

However, the fact that preferences are difficult to quantify

does not mean that it is impossible to model them. Fortunately, pref-

erence modeling has been the object of considerable research over the

past several decades. The result of this research has been to identify

various types of preferences (preferences among various attributes of

possible decision outcomes, time preference, and risk preference) and to

develop procedures for assessing at.d combining each of these preference

types within a single decision model. In decision problems containing

relatively simple and easily identifiable objectives, it is often unnec-

essary to model explicitly certain types of preferences (such as time and

risk preference). The subject of preference modeling is discussed in more

detail in Chapters III and IV of this report.

In many public sector decision problems, the difficulty assori-

ated with modeling preferences is compounded by the lack of a clearly iden-

tifled decision maker or decision-making procedure. Decisions made "in

committee" or as a result of competition among various agencies may re-

quire a rather detailed assessment and modeling of the preferences of all

of the competing parties in order to identify areas of possible compro-

mise and focus the debate on the underlying differences and objectives.

A decision analysis need not explicitly model the adversary process to help
in its resolution. Usually a decision model can be constructed based on

the assumption of a single set of preferences, and then each of the inter-

ested parties can exercise the model using his own preference structure.

Typically, this sort of analysis demonstrates that certain preference dif-
ferences are not worth arguing about because they lead to the same deci-

sion. (Explicit modeling of the process by which several decision makers

resolve their differences is another level of analysis which is discussed

separately below in Section C, Characteristics of the Decision Process.)
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2. Resources Available for Analysis (Limited vs. Extensive

Analytical Capability):

Closely eelated to the scale of resources affected by a deci-

sion is the level of resources made available for analyzing the decision.

The difference between the two quantities is that the level of resources

affected by the decision is usually determined by the decision environment

while the resources available for analysis can be determined by the deci-

siona maker. Determining the level of resources to allocate to the anal-
ysis of a decision is itself a secondary decision which could be analyzed. I
A tertiary decision wolild then be the determination of how much time and

effort to devote to the secondary decision, and so on. In most situations

it is doubtful that a detailed analysis of these second- and third-order

decisions is warranted. As a rule of thumb an individual might set a pol-

icy that for every major decision he will use some percentage (say one

percent) of the resources to be allocated by that decision to determine

the best mvthod for making the allocation.

There cre several types of resources that a decision maker

could devote to Lie analysis of a decision problem. To a cercain extent

each type of resource is needed for the analysis, and the levoyl of each

resource allocated has a significant effect on the nature of the result-

ing decision model. The types of resources include: the decision maker's

personal time, the time of individuals with expertise in various aspects

of the particular decision problem at hand, the assistance of analysts

with training in modeling decisions, the involvement of competing or coop-

erating decision makers, and the support of data-processing facilities.

The application of these resources to the analysis of a deci-

sion problem allows the decision maker to consider, and possibly model,I the tvlements of a decision problem in greater detail. However caution

should be exercised in developing detailed models and analyses of deci-

sion problems. All too often, detailed models are constructed to analyze

the decision outcome. As resources are allocated for modeling a decision

situation in detail, it is important that these resources be constantly

focused on the most important elements of the decision problem.
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3. Experience and Training in Analyzing Decisions (Intuitive vs.

Analytical Decision haking):

The process by which a decision is reached depends on the

backgrounds of the individuals involved in the decision. Some people

prefer to reason in verbal, non-quantitative terms; to them, a detailed

quantitative model might be inappropriate even if the resources to con-

struct one were available. Other decision makers find quantitative models

and analyses useful as a check for their own intuitive reasoning. Still

others find them the only satisfying decision procedure. An important

requirement for constructing a model to assist a decision maker with lit-

tle experience in analyzing decisions is that the conclusions derived

from the model be expressed in terms that are meaningful to the decision

maker. This usually means that model parameter4 must be carefully defined

to match the way that the decision maker thinks about the problem and that

complicated interactions within the decision model must be summarized in

intuitive terms.

The types of decision models appropriate to a parLicular sit-

uation depend not only on the analytical training of the decision maker,

but also on the training of the individuals supplying information to the

decision maker. If the people with expertise about the decision environ-

ment have not been trained in the procedures for estimating subjective

probability distributions, the development of a probabilistic model re-

quiring such distributions as inputs would necessitate the training of

the various subject experts before the model could be used.

When it comes to modeling, a little training may be worse than

none at all. All too often decision models are devloped that depend more

on an individual understanding of certain analytical techniques than on

the nature of the decision problem under investigation. A deciaion maker

may unconsciously exclude certain types of models from consideration, even

t though they might ba appropriate for describing a particular decision envi-

ronment, because he was either unaware of their existence or intent on

structuring the model in such a way that a particular analytical technique

would be applicable. As decision makers and analysts gain experience int I modeling a wide variety of decision problems, they tend to develop models
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that rely less on specific procedures or techniques and more on the nature

of the problem being analyzed.

C. Characteristics of the Decision Process

The term "decision process" refers to the interaction of the in-

dividuals associated with making a decision. Even if there is only one

decision maker in a particular situation, his decision may be influenced
strongly by the information supplied by other individuals or by the social

or organizational structure within which he finds himself. Obviously the

process by which people interact in order to reach decisions has a strong

influence on the types of decision models appropriate for analyzing deci-

sions.

I. Number of People Involved in the Decision (Individual vs.

Multl-person Decision Making):

Although it is common to refer to the "decision maker," major

decisions are seldom made by a single individual in isolation. Even

though one person may appear to be the decision maker, his options

and objectives may be strongly influenced by the decisions of others,

especially when his decisions must conform with organizational policy.

Furthermore, the information upon which the decision is based and the

manner in which it is analyzed may be the result of interaction between

a decision maker and a large number of other individuals. The manner

in which the decision is modeled will depend on the number of decision

makers, experts (suppliers of information), and analysts involved in

the declsion-making process.

When there is only one decision maker, a decision model will

be concerned primarily with his alternatives, preierences and information

about the environment; in this case, the environment is not trying to

anticipate his actions. However, when there are two decision makers,

each must take into account the possible actions of the other. Each

decision maker is faced with the task of estimating not only his own

state of knowledge but also that of the other individual, who in turn

must assess the amount that the first decision maker knows about his
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information, and so on. Attempting to model situations where "I know

that he knows that I know that he knows, etc." is a very difficult pro-

cess unless a number of simplifying assumptions are built into the model.

One assumption, which leads to the standard game-theory approach to deci-

sion making, is that the decision makers share the same information about

the environment and are capoble of analyzing all of the possible inter-

actions that could occur between them. More complicuted and realistic

game-theoretic approaches to multi-person decision making assume that the

decision makers have different states of information which are unknown to

their competitors, but these approaches often produce open-ended models

that are impossible to analyze.

'!hen there are more than two decision makers who can affect the

same outcome, modeling the decision process becomes even more difficult

because there are now enough people involved to permit the formation of

coalitions. In addition to making his primary decision, each individual

must make a set of secondary decisions concerned with reaching agreements

with other groups of decisio _,,kers. Although conceptually straightfor-

ward, models of coalitions among decision makers tend to be enormously

complicated and difficult to solve.

Fortunately decision situations in which there is only one de-

cision maker with several people supplying information about the decision

environment are considerably easier to model than those with multiple de-

cision makers. When there are several, possibly conflicting sources of

information about the environment, a decision model should be designed to

allow each piece of information to be incorporated into the analysis.

While this may produce a somewhat more complicated model, the resolution

of conflicting pieces of infornation does not require major changes in the

types of models used to analyze decisions.

2. Orzanization and Interaction of People Involved in the Decision

(Structured vs. Non-structured Decision Processes):

The analysis of situations involving several decision makers

is greatly simplified if the decision makers find themselves in an organ-4 izational or economic environment that governs or limits the manner in
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which they interact with each other. For example, in an economic market

composed of many decision makers, none of whom controls a sufficiently

large portion of the market to determine the prices of goods and services,

the decisions of one individual are effectively isolated from those of

another, although collectively their decisions determine the price and

quantity of every item in the market.

There are a number of different ways in which the interactions

among decision makers are controlled. In hierarchical organizations,

it is safe to assume that an individual's decision will override those

of others lower in the organization. While this assumption may not

always hold in practice, it is usually sufficient for the development of

decision models. Economic interactions are somewhat less structured

hut relatively easy to define. The degree to whli-h one decision maker

must take into account the decisions of others depends on such factors

as their relative shares of the market and the relative costs of various

outcomes for each decision m-iker. The interactions of political decisions

are often the least structured and the most difficult to make. Models of

political decisions usualiy contain limiting assumptions about the extent

to which each decision maker tries to outguess the others, and as a result

these models tend to be very crude approximation of the political process.

J
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III TYPES OF DECISION MODELS

This section deals with the various types of models that can be used

to analyze decisions. The characteristics of different decision models

are discussed both in terms of the components contained in the model and

its general mathematical structure. The purpose of this section is not

to describe specific models but rather to present an overview of the gen-

eral characteristics common to most decision models.

For the purposes of this discussion, a decision model is any quanti-

tative or logical abstraction of reality that is constructed and analyzed

to help somebody reach a decision. This definition is broad enough to

include almost any mathematical representation of reality, and appropri-

ately so, for almost every effort to develop a quantitative model is ul-

timately justified by its potential for aiding some form of decision making.

Even models that do not contain an explicit representation of the decision-

making process are often used to gain insight into the environment stir-

rounding a decision.

A. Components of a Decision Model

Decision models can be characterized by the types of components they

contain, by the relative importance of various components, and by the way

in which components are represented and interpreted.

The types of components in any decision model can be classified as

follows: syrl.em variables, which represent elements of the decision en-

vironment; the sequence or timing of Information Pbout the systum vari-

ables; the structural linkages or Interdependencies among the system var-

iables; and a specification of the decision maker's preferences among

possible states of the world as represented by the system variables.

Each type of component may have different names in different types of

models, but this classification is sufficiently general to encompass

the elements of any decision model. The various components are describAd

in more detail in the following sections.
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1. System Variables

System variables are those quantities chosen to represent ele-

ments of a decision environmo.:i that can exist in several possible states.

Identifying and defining all of the system variables contained in a model

dete mines the scope and specificity of the model: the range of possible

4 sit,,ations that the model can represent and the degree of detail with which

the model approximates reality. Specifying a particular value for each

system variable completely dnfines the state of the environment as repre-

sented by the model. The only variables in the model that are not system

variables are those that describe the decision maker's preferences --

preferences among states of the environment specified by the values of

the system variables.

System variables can be divided into two categories: those that

are directly and completely controlled by the decision maker, and those

that are not. System variables that are completely controlled by the deci-

sion maker are called decision variables. All other system variables, in-

cluding those that are influenced by the decision maker's actions but are

not completely under his control, are called state variables (or environ-

mental variables) since they define the state of the decision environment.

Decision variables must be defined in such a way that they re-

present the alternatives available to the decision maker, rather than

outcomes that are only partially under his control. For example, a bus-

inessman may or may not be able to control the price at which he sells

his product depending on the nature of the economic market within which

he operates. A monopolist is free to specify the price of his products;

for him, price is a decision variable. A businessman in a market charac-

terized by many producers (such as a farmer selling grain) may have to

accept the price determined by the marketplace; for him price is a state

variable. In some cases, a system variable can either be a decision var-

iable or a state variable depending on how it is used in the model. For

example, a farmer has the option of demanding any price he wishes for his

grain, knowing that if the price he specifies exceeds the market price he

will not find a Wuyer. A model that included the farmer's decision whether
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to set the price of his grain at the prevailing market price would con-

tain the farmer's price as a decision variable.

State variables define all of the elements of a decision model

other than a decision maker's alternatives and preferences. State vari-

ables can be determined in a two-step process. First, the variable itself

is identified and defined. The definition includes the range of possi-

ble values that the variable can assume and the scale along which these

values are measured. Second, the value of a state variable is specified,

either at a particular level or in terms of a set of possible values with

associated probabilities. The value of a state variable need not be known
at the time that a model is constructed. In fact, one of the purposes of

the model may be to determine the value of certain state variables. However,

a major portion of the modeling process may be devoted to defining state

variables carefully.

State variables can be classified as aleatory or- fixed depending

on whether the decision maker's state of informaion about a variable is

represented by a probability distribution or by a single deterministic

value. The decision maker's state of information and the relative impor-

tance of a state variable in determining the output of the model govern

whether a state variable is represented probabilistically or determinis-

tically. Since it is relatively difficult to process aleatory state var-

iables, decision models tyically include the assumption that all but the

most important state variables can be represented by a fixed or determl-

nistic value.

State variables can also be classified as either exogenous or

endogenous. Exogenous state variables are the inputs to the model.

They are not influenced by the values of other system variables, and they

must be specified before the model can be analyzed. Endogenous state var-

iables are those whose values or probability distributions are determined

by the model; they are usually not specified by the user. In some cases

an endogenous state variable will be specified by the user in order to

exercise a subsection of the model for which the variable is an input.

It is also possible for an internal or erdogenous state variable to be-

come exogenous by reversing the linkages or transformations among state



variables. The reversal of transformations within a model is discussedI in more detail in the following sections.

Athird way of clasuifying state variables is by whether or

not they are affected by the decisions described in the model. State

variables that are not affected by the actions of the decision maker

are included in the model to specify possible states of information or

situations in which the decision maker will have to select a course of

action. State variables that are affected by a decision maker's choices

are used in a model to represent the way in which a decision maker inter-

acts with his environment. Since state variables that are affected by

the actions of the decision maker are a function of decision variables,

they must be endogenous or internal state variables.

A fourth way of classifying state variables is according to

whether or not their values are known with certainty when any of the de-

cisions represented in the model are made. A revealed state variable is

one whose value is known prior to the selection of a course of action

specified by one of the model's decision variables. Llnrevealed state var-

iables are specified only in terms of probability distributions at each

of the decision points in the model. Unrevealed state variables are in-

cluded in decision models primarily to specify the range of outcomes that

could occur as a result of the actions t~ken by A decision maker. Spec-

ifying the things that might happen after a course of action has been

selected facilitates the assessment of a decision maker's preferences by

allowing him to separate his state of information about the occurrence

of various outcomes from his preferences among the outcomes.

Those system variables that are direct inputs to a model of the

decison maker's preferences are called outcome variables. Outcome vari-

ables can be either state or decision variables. The possible values that
these variables can assume are called outcomes. Outcomes are those quan-

tities that a decision maker would l.ke to know in order to determine the

desirability of a particular state of the world as represented in the model.

Outcome variables aCe typically determined by asking the decision maker a

question such as, "If you had to leave on a long vacation shortly after

jf) making a decision and could not find out what had happened until many years
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later, which quantities would you most like to know ia order to see how

things had turned out?"

2. Sequence of Information States

One of the essential elements of a probabilistic decision model

is the order in which information is revealed about aleatory state vari-

ables. Since the order in which information ii revealed controls a deci-

sion maker's state of information, it also influences his decisions.

Specifying the sequence of information states in a decision model defines

the order in which aleatory state variables are revealed. This specifi-

cation does not define the effect that revealing a state variable has on

the probabilistic description of other state variables contained in the

model. The specification of the sequence of information states in a de-

cision model can be made independently of an assessment of the manner in

which new information changes the decision maker's state of information.

Defining the sequence of information states in a decision model

is not the same as specifying the time dependence of the system variables

and their relationships to each other. For example, if the initial posi-

tion and velocity of a spacecraft is known, its trajectory can be calcu-

lated as a function of time. If the decision maker is uncertain about

the spacecraft's initial position and velocity, his state of information

about its position at any future time can be represented by a probability

distribution. A model of the decision to make corrections in the course

of the spacecraft might include specification of the times at which the

decision maker will receive new information about the actual position of

the spacecraft. The timing of this new information may be completely

independent of the time dependence of the qvacecraft's trajectory, and

even independent of the decision maker's earlier states of information

about the trajectory. Thus the sequence of variable revelation and their

time dependence can be specified independently.

S~The order in which aleatory state variables are revealed can

affect the decision process if their revelation is interspersed with a

series of decisions. In this case a change in the sequence of infor-

nation states can affect te decision maker's best course of action. On
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the other hand, if the order in which two aleatory state variables are

revealed is reversed, but no decisions are made between the time that the

two variables are revealed, the change in the sequence of information

states will not lead to a new decision.

The order in which information is revealed in a decision model

need not be the same as the order in which information is assessed. For

example, we might assess the likelihood that a forecaster will correctly

predict a rainy day even though a decision is based or. the likelihood of

rain given the weather forecast. The rules of probability theory can be

used to transform states of information assessed in one order into those

that occur if the sequence of events is altered. As a result, decision

models may require the specification of two sequences of information

states, one for assessment and one for use in the model.

3. Dependencies Among System Variables

A decision model must contain information about the manner in

which system variables are linked together. Like system variables, the

structural linkages can be either static or dynamic and either determi-

nistic or probabilistic. Furthermore, the relationships among system

variables, like the variables themselves, can be defined in two steps:

an identification of the fact that one set of system variables depends

on another, and a specification of the way in which the values of one

set of system variables can be derived from the other.

For example, a decision model could contain a relationship giv-

ing the position of an aircraft in terms of its location at takeoff and

its velocity and heading after takeoff. The exact transformation by which

the location of the aircraft is derived from the other quantities need

not be specified to show the relationship among the system variables. In

fact, the user might want to experiment with defining the transformation

at various levels of complexity and realism. .or instance the transfor-

mation giving the position of an aircraft in terms of its initial posi-

tion, velocity and heading may or may not be designed to take into account

the curvature of the earth.
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If all of the system variables related by a particular transfor-

mation are deterministic, then the transformation itself must be determi-

tnistic. A deterministic transformation specifies the exact value of the

dependent state variables for each combination of possible values for the

t independent state variables. Deterministic transformations can also be
used to define the structural linkages among probabilistic or aleatory
state variables. In this case the rules of probability theory are used

in conjunction with the deterministic transformation to produce the prob-

ability distribution for the dependent state variables from the probabil-

ity distribution of the independent state variables.

However, uncertainty in the outputs of a transformation may be

caused not by uncertainty in the inputs to the transformation, but rather

by uncertainty in the transformation itself. Probabilistic dependencies

among state variables are defined in terms of conditional probability dis-

tributions. However, conditional probability distributions arc used spar-
ingly in decision models because they require a great deal of effort to

specify, analyze and interpret. The nature of probabilistic dependence f
is a very complicated subject, especially when there are several dependent

variables. This subject is explored briefly in Appendix A.

The distinction between state variables and the transforma-

tions that link them together becomes somewhat clouded when the trans-

formation is parameterized. For example, one of the structural linkages

in a decision model might define one state variable an a multiple of

another, without specifying the exact value of the multiplier. In this

case, the multiplier may be varied, or even defined probabilistically,

in order to see how changes in Its value affect the output of the model.

If the model is formulated in this manner, the multiplier should be con-I

sidered a state variable rather than a part of the transformation. The

transformation should be redefined to produce the value of the dependent

state variable by taking the product of the multiplier and the other in-

dependent state variable.

The distinction between state variable. and transformations is

harder to recognize when the transformations are probabilistic because
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both state variables and model linkages may be defined in terms of prob-

ability distributions. The difference between them is that transformations

are defined by conditional probability distributions (distributions for

the output given the value of the input) while the probability distribu-

tions for state variables are not conditional.

4. Preference Model

A decision model can be described as a mapping* from decisions

and possible states of the decision environment to a measure of preference

that indicates how well the decision maker likes the resulting outcomes.

This measure of preference is called utility. Tlts view of a decision

model is shown in Figure 3.1. However, it is useful to think of a deci-

sion model as being composed of two submodels: a structural model that

describes the interactions among system variables, and an overall prefer-

ence model that describes the decision maker's preferences among the out-

comes determined by the structural model. This decomposition of a decl-

slon model into a structural model linked to a preference model is shown

in Figure 3.2.

Outcome variables, those state variables on which the decision

maker defines his preferences, can be probabilistic or deterministic and

static or time-dependent. Thus an overall preference modul may have to

include the decision maker's attittude toward uncertain or risky situations

and his preferences for outcomes occurring at different points of time.

In simple decision models the two submodels may be indistin-

guishahble. For instance, decisions are sometimes modeled with interac-

tion matrices which show the decision maker's alternatives, possible

states of nature (combinations of state variable values), and the utility

associated with each decision/state variable pair. In this case, outcome

variables are not represented explicitly.

*The phrase "mapping from A to B" refers to the mathematical process of
transforming elements in A into elements in B through some functional
relationship.
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However, most decision models are composed of separate struc-

tural and preference submodels. Because of the importance and difficulty

associated with modeling a decision maker's preferences, an overall pre-

ference model is often separated into a set of submodels. There are sev-

eral ways to accomplish this decomposition based on certain assumptions

about the form of tile decision maker's preferences. The three mauti types

of submodels used to specify preferences--value models, risk preference

models, and time preference models--are described below.

a. Value Models

A value model specifies a decision maker's preferences

among deterministic outcomes that can occur in several time periods. A

value model does not specify the decision maker's attitude toward uncer-

tainty or risk; it must be combined with a risk preference model to form

a complete model of the decision maker's preferences. However, in many

decision environments, the range of possible outcomes Is such that the

decision maker is willing to evaluate uncertain situations in terms of

their expected values. In this case, specification of tie value model

is all that is needed to define the decision maker's preferences.

The advantage of separating an overall preference model

into a value model and a risk preference model, as shown in Figure 3.3,

is that it simpilfies the process of specifying tie decision maker's pref-

erences. If his preferences are determined without the use of a distinct

value model, the decision maker must state his choices not only among com-

binations of possible outcomes, but also among all possible probability

distributions over the outcomes.

The process of specifying choices among deterministic com-

binations of outcomes is difficult enough without including uncertainty.

Without a keparate value model, the decision maker must answer questions

like, "Would you prefer a situation in which you had an equal chance of

destroying either 30% or 70% of the enemy force while losing 20% of your

own force, or a situation in which you destroyed 502 of the enemy force

and had an equal chance of losing 102 or 30% of your own force?" By
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FIGURE 3.3 A DECISION MODEL WITH VALUE AND RISK
PREFERENCE SUBMODELS

using a separate value model the decision maker can answer somewhat smin-

pler questions, such am, "Would you prefer a situation in which you had

destroyed 50% of the enemy force and lost 20% of your own forces, or a

situation in which you had destroyed 30% of the enemy's forces and lost

only 10% of your own forces"? While the second question is not easy to

answer, it is certainly easier to think about than the first question.

A value model transforms deterministic' outcotlies, w*hich may

or may not be functions of time, into a one-dimensional, static value mea-

sure. A value model includes not only the decision maker's preferences

among different possible outcomes, but also his preferences among outcomes

occurring at different times. Thus it includes the decision maker's atti-

tude toward changing the occurrence of an outc~ome from one time period

to another. As long as certain restrictive assumptions are built into
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the preference model, a value model can be constructed so that a decision

maker's time preference is modeled separately.

Depending on how a value model is defined, the value measure

that it produces may be either an ordinal or cardinal quantity. If a de-

cision maker is asked to specify only his preferences among possible com-

binations of outcomes, or to identify sets of outcomes among which he is

indifferent, then the value measure is an ordinal quantity. In other words,

the fact that one combination of outcomes produces a higher value measure

than another means only that the first is preferred to the second. The

relative levils of the two value measures do not indicate 1 -w much more

one set of ot'tcomes is worth than another.

On the other hand, if a decision maker specifies his pre-

ferences among combinations of outcomes by specifying how much more one

set of outcomes Is worth than another (measured in terms of some well-

dlined unit, like money) then the value measure is a cardinal quantity.

This menne that the value measure can be used to determine, not only which

combinations of outcomes are preferred, but also the relative values of

various combinations of outcories, measured in the units of the value men-

sure. For financial and economic decisions, it is often possible to spec-

ify a cardinal value measure, but for decision problems with many diverse

outcomes it is usually necessary that th. value measure be an ordinal

quant ity.

The simplest way to construct a value model is by simply

enumerating all possible combinations of outcomes and .hen specifying the

value measure associated with each combination. Often this process is

simplified by determining the decision maker's preferences among a few

possible s,,ts of outcomc1i and then using this information to draw approx-

imate indifference curves in the space spanned by the outcome variables.

Once the general form of the indifference curves has been ascertained,

they can be approximated by equations that map the outcomes into the value

measure*

One procedure for constructing a value model, called the

"multi-attribute" approach, is to measure separately the decision maker's

preferences for various levels of each outcome variable or attribute. This
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Thus the multi-attribute approach need not restrict the form of the value

model except for the requirement that the value measure be a cardinal

quantity.

However, the multi-attribute approach is usually accom-

panied by the assumption that the mapping, X(.], from the individual value

measure to the composite value measure is linear. With this assumption

the value model is restricted to transformations of the following form:

V - a 1I[O 1 (t)] + a 2W[0 2 (t))

There are many possible value models that cannot be represented in this

form. For example, this assumptioti would preclude a value model that spec-

ified that the value measure was equal to the product of the various out-

comes tt a specific point in time.

h. Risk Preference Model

When a value mnodel im used to spectfy the decision maker's

preferences among deterministic outcomes, a separate risk preference model

must be developed to represent the decision maker's attitude toward un-

certainty and risk. As shown in Figure :3.3, a value model transforms the

outcomes of the structural model into a one-dimensional, static value

measure. However, since the outcomes are generally uncertain, so is the

value measure. A risk preference model transforms the probability distri-

bution over the value measure into n single deterministic number, called

uttility, that measures the decision maker's attitude toward uncertainty

in the value measure.

Utility is a cardinal quantity that can be processed alge-

braically, but only in certain ways. The properties of utility are defined

byv ac•t of axioms* that govern the manner In which it cnn be processed
mathematically. The implication of these axioms is that, if a decision

maker prefers one distribution of uncertain value measures to ancther,

I the preferred distribution is assigned a higher utility. Furthermore,

*These axioms are described in detail in )51, [8), and (11l.
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produces an individual value measure for each outcome varicble. The in-

dividual value measures associated with the outcome variable are then com-

bined to produce a single, composite value measure. Since the value mea-

sure associated with each outcome variable is combined algebraically with

the other value measures, it musL be defined as a cardinal quantity. This

means that the relative value of twi possible levels of an outcome vari-

able must be defined in terms of some measurable quantity like dollars,

years, or lives. Unfortunately some attempts to construct a value model

using a multi-attribute approach have used procedures that produce ordinal

value measures associated with each of the outcomes; these individual value

measures are then combined algebralally as if they were cardinal quanti-

ties. The composite value measure produced by a multi-attribute value

model has meaning only if the individual value measures are cardinal quan-

titles.

In general, the multi-attribute approach does not restrict

the form of a value model, except that the value measure produced by the

moeq] and the value measures associated with eaci of the outcome variables

must be cardinal quantities. Regardless of how it Is developed, a value

model can be viewed as a mapping V (.1 , fr . the outcomes,
0(t) - (af(t). 02(t),,..] , to the value meast.re, v. This mapping can

be written v - V[O(t)]. ,,th the multi-attribute approach each of the

outcomes, Of(t), is mappd onto a corresponding value measure, w

Each of these mappings can be written: w, a W [O (t)]. The composite

value measure is derived from the individual, value measures with another

S~trtans format ion:

v M X* wI, w2,...] (WlOl(t)', w2192(t)],..]

As long as the transformations, wi [.] , from the outcomes to the Indi-

vidual value measures are all one-to-one mappings, it is always possible

to define a transformation, X(.], from the individual value measures to

the composite value measure such that:

V[O1I(t),O2 (t),...J - X(WItoI(t)lW2to 2(t)],..,1]6
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the utility of any distribution of values is equal to the expected utility*.

Although it is permissible to calculate the expected value of the various

utilites that might result from an uncertain situation, the utility ax-

ioms do not allow other mathematical manipulations, such as taking the

difference of the expected utilities associated with two uncertain situa-

tions. Since the utility axioms are equally applicable to preferences

among uncertain combinations of outcomes and preferences in terms of an

uncertain value measure, the mathematical restrictions on how utilities

can be processed apply whether or not a preference model is used as a

whole or decomposed into a value model and a risk preference model.

A risk preference model, as shown in Figure 3.3, is a map-

ping from a value measure to utility. The nature of this transformation,

especially the nonlinearities inherent in the transformation, define the

decision maker's attitude toward uncertainty and risk. This transforma-

tion can be written: u - R[v] , where v is the value measure, u is

the utility and R(.j is the mapping defined by a risk preference model.

A risk preference model is combined with a value model

that maps the outcomes intr. ti:e value measure: v - Vro(t)] . Together,

these two submodels form a preference model which defines a mapping,

U(.] , from the outcomeq to utility: u - U (O(t)]. The use of distinct

value and risk preference models does not restrict the form of an overall

preference model as long as U(.] and Vt.) produce the same ordinal

ranking among the possible sets of outcomes. In other words, if an over-

all preference model, U[.] , and a value model, Vt.] , represent the

same preferences when the outcomes are known with certainty, then it is

always possible to define a risk preference model, R(.] , such that the
S ' combination of tile value model and the risk preference model, R[V[.]]

produce the same preferences for uncertain outcomes as the overall prefer-

ence model, U[.].

*The expected value of an uncertain quantity is equal to the sum of
all possible values, each multiplied by its associated probability.
Thus expected utility is the sum of all possible utilities, each
multiplied by its associated probability.
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There only are two assumptions inherent in constructing

an overall preference model from a value model and a risk preference model:

(1) the decision maker's attitude toward risk is defined over all of the

possible outcomes that could occur, including outcomes that occur in dif-

ferent time periods, and (2) it does not change with time. These assump-

tions are necessary because information about the time at which various

outcomes occur is not contained in the value measure, the input to a risk

preference model.

c. Time Preference Model

A preference model can be expanded even further by con-

struc•ing a scparate submodel of the decision maker's time preferences.

This Is accomplished by decomposing the value model shown in Figure 3.3

into two submodels: a single-period (instantaneous) value model* and a

timeý preference model. Thuse sub-models are shown in Figure 3.4. The

single period value model maps the outcome at each point in time into a

corresponding level of a time-dependent value measure. This value mea-

sure, unli.ke the one discussed previously can have a different value at

each point in time. The time preference model maps the time-dependent

value measure into a static value measure that includes the decision

maker's preferences for the occurrence of outcomes in different time

rieriods. The single-period value model produces the same mapping from

the outcomes to the time-dependent value measures at each point in time

since all of the decision maker's preferences with respect to time are

included in the time preference model.

Although the static value measure can be either an ordinal

or cardinal quantity, the time-dependent value measure must be a cardinal

quantity. If the time-dependent value measure were an ordinal quantity

that ranked the decision maker's preference in any time period, but not

his preferences among outcomes in different time periods, it would be

impossibie for the time preference model to establish preferences among

*Time is treated as a diacrete quantity in this section, but the concepts
apply equally well to models where time is a continuous quantity.
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Certain Outcome -1 for Outcomes' (INSTANTANEOUS)

in Each Time (Attributes) VALUE MODEL

Time-dependent Value
Measure' (Cardinal)

Time TIME PREFERENCE

Preference MODEL
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RiskRISK PREFERENCE
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Preference UTILITY FUNCTION)

Utility (Cardinal)

"May be a function of time,

FIGURE 3.4 A DECISION MODEL WITH A TIME PREFERENCE

SUBMODEL

.
the outcomes in different time periods. For example, given that a deci-

sion maker prefers outcome A to outcome B in either of two time per-

lods and that he prefers either A or B to occur in the first time

period rather than the second, it is not possible to establish whether he

prefers outcome B in period I to outcome A in period 2 unless further

information is supplied. Thus the single-period value model must measure

all of the possible combinations of outcomes at a particular point in time

along a cardinal value scale so that these value measures can be manipulated

by the time preference model to produce a static value measures
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In Figure 3.3 the value model maps the time-dependent out-

comes into a static value measure: v - V[O(t)]. In Figure 3.4 this

mapping is accomplished in two steps. The single-period value model,

St.] , maps the outcomes at each point of time into the tLme-dependent

value measure, 9(t). This mapping can be written: s(t) - S[O(t)].

The time preference model, T[.] , maps the time-dependent value mea-

sure into the static value measure: v - T[s(t)]. Thus the mapping

performed by the overall value model, V[.] , can be written:

p vIn general, decomposition of the value model into a single-

period value model and time preference model need not restrit. the form

of the value model, except that both the time-dependent and static value

measures must be cardinal quantities. However, the assumption that the

time preference model has a particular form, such as the sum of the time-

dependent value measures for each time period weighted by an appropriate

discount factor, does restrict the form of the value model.

A specification of the decision maker's time preference,

either in a time preference model or as an integral part of an overall

preference model, is sometimes used in place of an explicit model of the

decision maker's resource allocation decisions over time. In this case

the decision maker's preferences may be based on both the time at which

an outcome occurs and the time at which information about the outcome Is

revealed. For example, an individual faced with an equal chance of win-
ning or losing a large sum of money one year from now might prefer to re-

solve the uncertainty now even though the time at which the gain or loss

occurs cannot be changed. If he knows in advance whether he will win or

lose the money, he can modify his current resource allocation decisions
accordingly. If the resource allocation decisions are not an explicit

part of a structural model, but are modeled implicitly as part of the de-

cision maker's time preference, the sequence and timing of his states of

information must be defined as an outcome. Otherwise the preference model

will be based on insufficient information.
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B. Characteristics of Decision Models

The characteristics of a decision model are only partially defined

by the nature of the model's components. In addition, decision models

can be described by their overall structure and scope. The purpose of

this section is to describe the global chara.ýteristics of various types

of decision models.

1. Relative Emphasis on Explicit Modelins and Assessment

By definition, models are incomplete representations of reality.

Therefore, whenever a decision maker's preferences or state of informa-

tion are assessed, additional models could be developed to help determine

the assessed quantities. The designer of a decision model will always

be faced with a choice between direct assessment and further modeling.

As a result, decision models can be characterized by the relative empha-

sis placed on assessment and modeling.

Simple models usually rely heavily on direct assessments of

the decision maker's preferences and state of information about the

environment. For example, the interaction matrix discussed In the

preceeding section is a relatively simple model to construct, but it

requires that the decision maker stare his preferences for all possible

combinations of decisions and states of the environment. This type of

model requires the decision maker to aggregate mentally the effects of

the interactions among his decisions and elements of the environment at

the time he assesses his preferences. If the decision environment is

complex, the decision maker may be very uncomfortable about making such

global assessments. Even if the decision maker feels that he can make

the assessments required by a simple decision model, he should proceed

with caution. It is easy to demonstrate that humans are very poor at

assessing the interactions of probabilistic quantities.

As a model is developed, preliminary assessments may be used

temporarily to represent undeveloped subsections of the model. This

procedure allows an analysis of the simplified model to determine the

importance of each subsection of the model and the relative advantage
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of developing a detailed model of that subsection. This process also

makes it possible to determine tho- appropriate level of assessment to

use in place of further modeling.

2. Model Complexity and Size

Another way of characterizing decision models is by the number

of system variables contained in the model and the intricacy of the

interactions among them. The complexity of a model is related to, but

not determined by, its size. Even a small decision model, one with rel-

atively few system variables, can contain a very complicated set of

Interdependencies among variables. For instance, situations in which

the decision maker's state of information about the environment changes

rapidly and unpredictably often require a complex decision model even

though the environment can be adequately described by a few aggregate

variables.

. The level of aggregation used to define system variables will

affect both the size and complexity of a decision mode]. Model designers

are often faced with a choice between using a large number of specific but

sparsely-interconnected system variables or a smaller number of aggregate

variables that are highly interdependent because they represent all of the

relationships among the more specific variables. The appropriate level of

aggregation for system variables is often determined by the difficulty
I,associated with assessing the interdependencies among them. If system J

variables are overly aggregated, the decision maker may find it impossible

to assess intuitively the intricate interactions among them. In this case

it is necessary to disaggregate some of the system variables to simplify

the task of assessing the interdependencies among them.

Decision makers have a great deal of difficulty comprehending

and accepting results derived from a large, complex decision model if

the interaction of system variables cannot be explained in a simple,

logical manner. This often leads the model designer to make assumptions

about the degree to which system variables are interdependent which may

or may not reflect reality. Often the most limiting assumptions in a

decision model are those related to the interactions among system variables,
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rather than assumptions about the definitions or values of variables. In

modeling efforts where the interactions among system variables have been

oversimplified, it may be useful to expand the size of the model by defining

a larger number of more specific variables whose Interdependencies are

easier to define.

3. The Mathematical Structure of a Model

One of the most common ways of characterizing a decision model is

in terms of its mathematical properties, such as whether the system vari-

ables are deterministic or probabilistic, continuous or discrete, static or

time-dependent, and constrained or unconstrained. While these character-

istics may not be of great concern to a decision maker, they can be crucial

in determining the feasibility of analyzing the model and its usefulness in

describing the decision environment.

Deterministic models are those in which it is assumed that the

state variables and the relationships among them are known with certainty.I Probabilistic models contain uncertain state variables, and may or may not

contain uncertain structural linkages among the system variables. The

simplest probabilistic models are those with few, if any, probabilistic

relationships among the system variables. Models with a large number of

probabilistic dependencies are generally very difficult to specify and

analyze.

System variables and structural linkages can also be either

continuous or discrete. Models can be defined with discrete system

variables and continuous transformations, but not with continuous system

variables and discrete transformations. It is often desirable to treat

time as a discrete quantity and specify probability distributions in terms

of a discrete set of possible outcomes in order to facilitate the analysis

of a decislon model with a digital computer.

Two types of decision models that have proven especially useful

in the work of the SRI Decision Analysis Group are: (G) those with contin-

uous state variables, some of which are probabilistic. and a set of rela-

IL tionships among the system variables represented primarily by continuous,

deterministic transformations; and (2) those with discrete, probabilistic

J.. state variables and probabilistic linkages among the state variables.
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In the first type of decision model, the structural model is

divided into two submodels as shown In Figure 3.5. Probabilistic depen-

dencies among the state variables, if any exist, are represented by an
S; Exogenous Stat.

Vav~ab"a

ST RUCT URAL.
MODEL

PROBABILISTIC

ENVIRONMENTAL
MODEL

State Vetlabeb

~c~sionDETERMINISTICVeision ,, INTERACTION

z MODEL

Oulcomnes

L FIGURE 3.5 A USEFUL TYPE OF STRUCTURAL MODEL

!environmental model which Is not affected by the actions of the decision
maker. The state variables produced by the environmental model are combined

with the decision variables In a deterministic hoteraction model which

produces the outcomes. One of the assumptions contained in this type of

model is that the actions of the decision maker do not influence his state

of knowledge about the state variables. This assumption, plus the decom-

position of the structural model into separate probabilistic and deter-

ministic submodels, makes this class of models relatively easy to define
I and analyze.

The second type of decision model, containing probabilistic re-

lationships among discrete, probabilistic system variables, is usually rep-

resented by decision trees. The fact that the variables are discrete means

that their possible values can be represented by branches on a decision
Itree, and the probabilistic relationships among variables are easy to spet-

if-y in terms of probabilities associated with varioun branches of a tree.

-- -~52

S N ...... M;



Decision models car. also be characterized by whether or rnot

system variables and the relationships among them are functions of time.

It is common for state variables to be time-dependent, but it is quite rare

for the transformations among them to vary with time. This is partially

due to the fact that a model can often be constructed so that the time-

varying portions of transformations are treated as state variables. This

is done in the same way that the uncertainty inherent in a transformation

is represented by a state variable. For example, when one of the depen-

dencies in a model specifies that one state variable is a time-varying

multiple of another, the multiplier can be considered a time-~dependent

state variable and the transformation can be defined as one which produces

the dependent state variable from the multiplier and the independent state

variable.

Time, like any other model parameter, can be either continuous

or discrete. If time is modeled as a discrete variable and only a few

time periods are considered, it is possible to specify the occurrence

of modcl elements in different time periods as separate system variables.

In this case the time dependency of the model is suppressed and each of

the sysLent variables is a stationary quantity. This allows the user to

model a time-varying decision environment with a decision model that is

essentially static.

Another mathematical property that characterizes decision

models is whether or not the values of the system variables are con-'

strained Lo lie in specified intervals. The inclusion of constraintsI has a significant effect on the form of a decision model, in many cases

simplifying the task. of analysis. Constraints are an essential featLre

of certain techniques of mathematical. analysis, such as linear program-

ming. However, constraints are often crude approximations of reality,

and they may exclude from consideration courses of action that are both

feasible and desirable. For example, a model of a decision to allocate

aircraft maintenance tasks to various repair facilities might be based

on the assumption that each facility has a certain maximum capacity.

The solution of such a model might overlook the fact that by slightly
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expanding the capacity of one of the repair facilities the work could

be carried out in a more cost-effective and efficient manner.

In place of constraints, decision models carn incorporate a

description of the cost involved in allowing system variables to take

on values beyond their normal operating ranges. In the example discussed

above, the model could include the cost of expanding the capacities of

the various repair facili'les. Obviously this would require a somewhat

more complicated decision model, but the model would more accurately

reflect the true nature of the decision.

The appropriateness of using constraints in decision models

is influenced by the organizational structure within which the decision

maker must operate. Policy decisions in large organizations are often

stated in the form of constraints, even though subordinate decision

makers might take courses of action more in keeping with the goals of

the orgainization if policy were specified in terms of tradeoffs rather

than constraints. Policy constraints supply guidance to a decision

maker when he ,is operating near one of the constraint boundaries, but

otherwise they are not helpful. Policy constraints are particularl1

inappropriate when they are applied to state variables instead of deci-

sion variables. For instance, issuing an order to a military commander

to avoid contact with the enemy while maintaninlng a articular position

overlooks the fact that the outcome of contact with the enemy is partially

determined by fact.ors beyond the commander's control.

Often the mathematical structure of a decision model is descrihed

by the particular solution or optimization technique used to analyze the

model. For example, one might refer to a particular decision analysis as

a linear programming model, a Lagrange multiplier model, o" a decision

tree model. While such characterizations are often use ul for describing

the model's properties, it is unfortunately the case that many models are

constructed specifically to make use of a particular solution technique.

The process of modeling, which will be discussed in detail in the following

section, should be oriented primarily toward developing an adequato and

efficient representation of a decision situation, and only secondarily to

producing a mathematical structure amenable to analysis by a particular

mathematical technique.
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IV THE PROCESS OF MODELING AND ANALYZING DECISIONS

To construct and analyze a decision model, it is necessary

to carry out a number of logical procedures. These proceiures are die-

cussed in this chapter. They can be broken into two broad categories:

modeling and analysis. The modeling process is primarily concerned

with defining the various components of a decision model described in

the preceding section. The analysis process involves solving a model

to determine its implications for decision making, and computing the

effects of changing assumptions inherent in the model.

Figure 4.1 shows an overview of the process of modeling and

analyzing decisions. This figure illustrates the fact that the elements

of modeling (structuring and assessment) and the elements of analysis

(model solution, sensitivity analysis, and determining the value of

information) are used iteratively to develop a decision model. In other

words, the model itself is used to determine which of its components

should be modified, expanded, or contracted. Furthermore, the model is

used to guide efforts to gather new information which, in turn, may

lead to a modification of the structural definitions or assessed values

contained in the model.

Each of the steps shown in Figure 4.1 is discussed separately

in this section. However, none of them can be carried out independently:

each requires information and insight produced by the others.

A. Moein

The elements of a decision situation can be modeled in two steps:

identification of model components and specification of the decision

maker's state of information about them. Thus the process of modeling

decisions can be divided into two steps: structuring and assessment.

Structuring consists of identifying the elements of a decision model, and

assessment consists of quantitatively specifying the values of variables

and the nature of transformations among them.
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1. Struct~uring

During the structuring process, a decision model is defined in

skeletal form. The decision maker's alternatives, the possible outcomes

that could result from his actions, the external factors affecting the

outcome, and the linkages among the model variables are all identified.

Usually the tiiost critical assumptions contained in a model--

assumptions that define the %cope and nature of the model--are made when

its structure is defined. However, there are no rigid rules for structur-

ing deciuion models, Compared to methods of assessment or analysis, the

structuring process has been the object of relatively little research and

theoretical development. The discussion that follows outlines typical

approaches to structuring decision models, but there are probably as many

variations to these approaches as there are analysts and decision makers.

The first step In developing and apropriate model structure

is making sure that the right decision is being analyzed. The need for

a decision may be recognized, but if the problem is defined so that ma-

jor alternatives or important elements of the environment are not con-

sidered, a comprehensive analysis will never be possible. A decision

situation can be put in proper context by identifying the decision makers

involved and the resources that each has to allocate. This simple step

can quickly eliminate facets of the problem about which a decision maker

is concerned but over which he has no control. It is quite possible that

the initial perception of a decision situation is unnecessarily narrow or

restricted. Probing the constraints placed on a decision maker and explor-

ing his relationship with others who influence or are affected by his de-

j cision often changes the perceived nature of the decision. This initial

exploration of a decision is carried out qualitatively and intuitively.

but it forms a conceptual framework for a1 quantitative model.

once a decision has been examined qualitatively and its scope has

been properly specified, the system variables that characterize the most

important elements of the decision environment are defined, RelativelyI

global system variables that compactly represent the environment are gen-j

erally defined first, and tOen are decomposed into more specific variablesA
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as the analysis progresses. Typically the definition of system variables

begins with specification of the outcome variables, and then state variables

are defined as they are needed to help determine the outcomes of importance

to the decision maker. This process leads to questions like, "What would

you most like to know in order to specify your state of intformation about a

particular outcome variable?"

The process of defining state variables by working backwards

from the outcomes can lead to an unnecessarily large model--one that

concains too many mystem variables--if steps are not taken to focus the

analysis on the choices available to the decision maker. Thus in

defining the state variables that would be most useful in determining

the outcomes, it may be necessary to concentrate on those that are

influenced by or define the effects of a decision. In this case the

question might be asked, "Which quantities, over which you can exert

some influence, would you most like to know in order to specify your

staLe of information about an outcome?"

Obviously the process of working backwards from a variable to

others that influence it can be applied to any state variable, not just

outcomes. For instance, having determined that the equivalent annual

cost of a large piece of equipment is determined by its operating cost,

maintenance cost, and depreciated purchase cost, it then may be useful

to specify the maintenance cost as a function of the mean time to failure,

the tepair time, and opportunity cost of maintenance personnel. However,

thtv extent to which the model should be refined and expanded can be guided

by a preliminary analysis of the model as it is being developed. (See

the discussion of sensitivity analysis later in this chapter.)

Another procedure used to specify system variables is to iden-

tify a sequence of events that could lead from a decision to an outcome.

The development of a scenario shows only one of the possible consequences

of a decision, but a careful definition of a scenario usually exposes the

major variables that might lead to differer,; outcomes. The process of using

scenarios to reveal the system variables that shotild be included in a de-

cision model is most useful in situations where it is possible to establish

the sequence of events over time.
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It is often the case that these two processes--working backwards

from the outcome variables to system variables upon which they depend and

specifying of sequences of events over time--lead to definitions of the

same system variable, but to different sequences of information states

about the variables. Specifying system variables that help determine the

values of other variables implicitly defines the order in which the state

of information about the variables should be assessed. On the other hand,
specifying the sequence of events that could follow a decision defines the

order in which information about the variables will actually be revealed.

As discussed in the preceding section, a decision motel may require two j
sequences of information states: one for assessment and one for model

solution. A fully developed decision model must specify both sequences.

The sequence of Information states chosen for assessment strongly

Influences the ease and feasibility of assessing the existing state of

intormation about the decision environment. Fortunately an analyst usually

Is free to specify this sequence. iowever, the sequence used to solve a

model is determined by the decision environment. This sequence is one of

the basic assumptions that determines the realism of a model. This sol-
ution sequence may be especially difficult to determine in situations where
events can occur in several possible sequences. For example, a model

concerned with the U.S. response to intervention by any of several major

powers in a regional conflict between two small countries may strongly

depend on the order in which it is assumed the major powers will become

involved. If either sequence of information states is not obvious from the

decision environment, it may be necessary to test the sensitivity of both

the model's inputs and outputs co different sequences.

The interdependencies among system variables are often identified

at the same time that the variables are defined, but this sort of implicit

definition of model linkages may lead to an inaccurate or insoluble model.

It is important to include significant interdependencies among system

variables in the model, but since the number of possible interdependencies

grows very rapidly as the number of system variables is increased, numerous

independence assumptions are required In all but the most trivial models.

An important part of defining the structure of a decision model is keeping
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track of the linkages among variables and the resulting flows of informa-

tion through the model. Independence assumptions that individually make

sense can easily produce unrealistic and unanticipated results if their

combined effect is to isolate or overemphasize portions of the model.

Several methods for visualizing the linkages among system variables are

discussed in the following section.

Most of the structure of a decision model is developed to re-

late the decision maker's choices and external influences to the outcome

variables. However, the designer of a decision model must also specify

the structure of the preference modfl used to evaluate the outcomes. This

is a relatively simple process since there are only a few basic types of

preference models, as described in the preceding section. To specify the
structure of a preference model one must decide whether the preference

model will include a separate value model, risk-preference model, and
time-preference model; and which procedures will be used to elicit the

desired value measures and utilities (such as the multi-attribute approach,

definition of tradeoffs, paired comparisons, etc.). The elicitation

procedures must be compatible with the type of preference models chosen.

Fo- instance, elicitation procedures that produce ordinal quantities should

not be used with preference models that require cardinal quantities.

As the structure of a decision model is defined, the model

components can be tested and modified. The process of testing model

components relies on the judgment of the decision maker and his advisors,

and preliminary analyses of an evolving model. Tests of model components

can be placed in three categories: meaningfulness, completeness, and

appropriate level of detail. These tests are applied repeatedly as a

decision model !.s developed.

Testing a model component for meaningfulness is equivalent

to asking, "fDoes the proposed ipresentation make sense to the decision

maker?" If the answer to this question is negative, then one or more

of the model components need to be reformulated to make them correspond

to the decision maker's perception of the situation.
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Testing a model component for completeness means checking to

see whether some important aspect of a decision problem has been overlooked

in the current version of the model. A typical question corresponding to

this test is, "Does the model include all of the alternatives available to

the decision maker?" If the answer to this sort of question is negative,

then the type of component under consideration (in this case, the decision

variables) must be expanded to include the missing elements of the problem.

Testing a model component for appropriate size means checking

the level of detail at which some aspects of a decision problem are rep-

resented in a model and the amount of assessment and computational effort

implied by such a representation. A typical question corresponding to

this test is, "Does the importance of this aspect of the problem justify

the detail with which it is modeled?" If the answer is no, the model can

be contracted by eliminating or aggregating noncritical components.

The structure of a decision model is limited by the extent to

which a decision maker can znticipate changes in his view of the envir-

onment resulting from new information. The effect of changes in the

decision maker's state of information about the appropriateness of a

particular model structure becomes especially important in an attempt

to model a decision that must be made some time in the future. While a

current analysis of some future decision may clearly indicate a preferred

alternative, a new and unanticipated perception of the problem structure

may lead to the selection of another alternative when the decision is

finally made. This possibility makes it undesirable to analyze a decision

completely until it is possible to make an immediate choice. Instead the

aiilysis of a future decision should be based on a structure with enough I
gen,.,rality to accomodate possible changes in the decision maker's percep-

tior, of the problem. However, the fact that every possible future state of

* Lnformation and its effect on the structure of a model cannot be foreseen

does not mean that comprehensive decision models are inappropriate for

current decisions. Decisions can only be made with whatever information is

available at the time; a model simply serves to explore the implications of

that Ltate of information.
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2. Assessment

During the assessment process the existing state of informa-

tion about components of a decision model is quantified. The values of

probability distributions for state variables are specified, and the exact

nature of the transformations linking system variables is defined. In

addition, the decision maker's preferences among possible outcomes, the

* I time at which they might occur, and the risks associated with each alter-

native are specified.

Fortunately the process of assessing states of information and

preferences has been the object of considerable research. While there

is not universal agreement on how these assessments should be made, the

various procedures that have been developed are characterized more by their

similarities than their differences. Typical assessment procedures are

* I discussed below.

a. Assessing State Variables

The manner in which information about a state variable is

V assessed depends on how important the: variable is to the output of de-

cision model. Information about criti,..al state variables, those to which

the outcomes are highly sensitive, is usually assessed in the form of

probability distributions, while less important state variables are usually

specified deterministically. Development of procedures for assessing state

variables has concentrated on various types of probability encoding.

Most probability encoding procedures have dealt with the

encoding must overcome the cognitive and motivational biases that distort

the subjective information supplied by an individual. Cognitive biases

are a systematic distortion of subjective estimates caused by the way one

thinkb about uncertainty. For example, a response may be biased toward

the most recent piece of information simply because that information is

easiest to recall. Motivational biases are distortions in an individual's

subjective judgment caused by his perceived system of personal reward for

various responses. For example, an individual may want to bias his response

62

-*7 *3 . -. t..ntl&M

~ ~ .:xli~n AL-a _

"UmT



V.0-

because he perceives that his subsequent performance will be evaluated by

a comparison of his response to the actual outcome.

Techniques fox eliciting information may be classified

according to the type of questions asked. Probability methods require

the subject to assess the probability associated with a particular value

of a state variable. Value methods require the subject to assess the value

that corresponds to a particular probability. Mixed probability-value

methods require the subject to assess values on both the outcome and

probability scales; the subject essentially descibes points on the cumu-

lative distribution of an uncertain quantity.

These encoding methods can be used in either a direct or

an indirect response mode. In the direct mode, the subject is asked ques-

tions that require numbers as answers. The answers can be given in

the form of probabilities (or equivalently in the form of odds) or

values. In the indirect response mode, the subject is asked to choose

between two or more uncertain situations. The probabilities character-

izing the situations are adjusted until he is indifferent, and the point

at which he is indifferent is translated into a probability or value

assignment. The indirect response mode is typically used with a refer-

ence process, where the subject is asked to compare some aspect of an

uncertain quantity to a reference process such as the toss of a fair

coin or the spin of a wheel of fortune.

Which encoding method is most appropriate depends on the

type of uncertainty being assessed. For instance, if there are only a

few possible outcomes for an uncertain quantity, a method that requires

the subject to divide the range of possible values for a state variable

i: into a number of intervals may not be appropriate. The choice of encoding

method should be based on the characteristics of the uncertain quantity,

its importance to the modeling effort, and the personal preferences of

the person supplying the information.

The encoding process consists of five distinct phases: the

motivational phase, structuring phase, conditioning phase, encoding phase

and the verification phase. In the motivational phase, the analyst must

explore the subject's motivational biases and attempt to eliminate or
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compensate for them. In the structuring or definition phase, the subject

and analyst must reach an agreement on the exact definition of the uncer-

tain quantity being considered. The conditioning phase is directed toward

finding out how the subject goes about making his probability assignments

I and heading off any biases that might surface during the encoding process.
Once the uncertainty has been well defined and the subject's cognitive

and motivational biases have been explored, the process enters the encod-

ing phase and utilizes one of the encoding methods discussed above. In

the verification phase the encoded information is subjected to a number

of consistency checks to see if it truly represents the subject's beliefs.

Encoding the probability of rare events--events that have
a very small probability of occurrence--is difficult for two reasons.

First the subject is asked to assess the probability of an event with

which he has, by definition, little experience. Secondly, he may have

to distinguish among very small probabilities (for example, a probability

of one in one thousand as compared to a probability of one in ten thou-

sand).

Procedures have been proposed for overcoming these diffi-
culties. One such procedure is to relate the rarr event to other uncertain

events with which to subject is more familiar; another is to describe the
Sevent in terms of its component parts or as the result of a sequence of

other events. The purpose of these procedures is threefold: to gather

all of the information relevant to the event that is within the subject's

command, to see if the event can be redefined in terms that no longet in-

volve small probabilities, and to produce lists of related events that

can be used as reference points in getting the subject to make relative

statements about their uncertainty.

The subject is asked to make relative Judgments about the
occurrence of a number of different events before dealing with very small

probability numbers. Subjects can often say whether one rare event is
more or less likely than another rare event, even though they would find

it difficult to assign a numerical probability to either event. By doing

so the subject can bound the probability associated with a rare event,

and then narrow the bounds as required for the modeling effort.
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The assessment of state variables becomes more complicated

when the judgment of a group of people is quantified. There are many

decision problems for which more than one expert is available to supply

subjective estimates of uncertain quantities, and there can be consider-
4 able differences of opinion among the various experts. Group encoding

procedures are used to aggregate the estimates of several experts into

one probability distribution that can be used in a decision analysis.

Group encoding is currently carried out with several sub-

jects, whose judgments may have been encoded individually prior to the

group encoding session, and an analyst who monitors the flow of informa-

tion among the subjects to see that all the relevant opinions are discussLd

and incorporated into group consensus. Another individual may have the

responsibility of reviewing the group consensus and dissenting opinions,

and deciding on the final probability distribution that should be used

in the analysis. This individual is typically the head of the organi-

zation L-,t has employed the services of the group of experts. I
Much of the research associated with group probability en-

coding has been concerned with the way in which information should be

exchanged among the individuals supplying subjective estimates. At one

extreme, it has been suggested that participants in the group encoding

process remain anonymous, and that they send each other their subjective

estimates but not the logic behind the estimates. This procedure has been

called the Delphi technique; it is designed to reduce the influence of

group members with dominating personalities and to encourage each member

of the group to reach his or her own opinion. Alternative procedures

allow the participants to meet face-to-face and exchange information

}I freely. These procedures are often more successful in producing a group

consensus than Is the Delphi technique, in part because each member of

the group can learn from the additional information supplied by others.

b. AssessinR Dependenci.,s

After the structuring process has identificd the linkages

among system variables, the manner in which the variables depend on each

other is usually assessed in two steps. First the dependencies are assumed
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to have particular forms, and then they are assessed quantitatively. For

instance, it might be assumed that the cost of maintaining a piece of equip-

ment grows exponentially, so the cost in any year can be determined by mul-

tiplying the previous year's cost by a certain growth factor. With this

assumption, the quantitative assessment reduces to one of specifying the

growth factor.

In determining the nature of a decision model, the assump-

tions made about the form of interdependencies among variables are at least
as important as a quantitative assessment of the dependencies themselves.

Yet most of the existing procedures for assessing dependencies focus on the

quantitative assessment of relationships whose form has already been deter-

mined. For example, regression analysis (linear least-squares curve fitting)

provides a means for deriving the parameters of a transformation from exis-

ting data if one is willing to assume that the transformation has a partic-

ular linear form. While assumptions about the form of variable dependencies

may be necessary to simplify the task of assessing them, caution must beI exercised to avoid assumptions that do not approximate reality. No amount
of quantitative assessment will produce an acceptable approximation of a

relationship among elements of a decision problem If the relationship on

which the assessment is based has an inappropriate form.

One of the basic assumptions that must be mdde about the

form of relationships among system variables in whether they should be

represented deterministically or probabilistically. By assuming thata

dependency is probabilistic, one can include the effects of several

possible deterministic transformations in the same mode. This makes it .
somewhat easier to accept the asL~umpt ions inherent in the form of thle

transformation. However, the use of probabilistic relationships can

greatly increase the difficulty associated with quantitatively specifying

the dependency. To overcome this difficulty it may be necessary to

couple the use of probabilistic relationships with assumpcions ofI
independence, especially in models where state variables are aleatory

and the transformations among them are described by conditional probabi-

lity distributions.
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For example, consider a model in which there are four

aleatory state variables, each of which has three possible values. If

the variables are all independent, the decision maker's state of informa-

tion about them can he specified with 12 probabilities. On the other hand,

if they are totally dependent, it will be necessary to assess at least

81 probabilities, most of them defining probabilistic dependencies.

Sometimes it is easier to assess the uncertainties asso-

ciated with dependent aleatory state variables as joint probabilities,

while in other situations It is easier to assess the same information in

terms of conditional probabilities. A joint probability distribution

specifies the likelihood of every possible combination of values for

the state variables. Conditional probability distributions specify the

probability that some subset of state variables have certain values

given the values of the remaining variables. Either set of probability

distributions can be derived from the other; the decision maker can

supply whichever is easier to assess.

In the example of four aleatory state variables, each of

which has three possible values, there are 81 joint probabilities, one

for every possible combination of values. However, 117 conditional prob-

abilities, plus three additional probabilities specifying the state of

information about one state variable, are required to specify the same

information if the variables are completely dependent. In this case the

number of conditional probabilities needed to specify the dependencies

exceeds the number of joint probabilities, which means the joint prob-
abilities are probably easier to assess. However, if it is assumed that

some of the state v~.riables are independent, the number of probability

assessments may be minimized by eliciting conditional, rather than joint,

probabilities. For instance, if each state variable in the previous ex-

ample depends on only one other variable, only 27 conditional probabil-

ities are required to specify the dependencies. In this case It is prob-

ably preferable to assess conditional probabilities.

However, the choice of assessing either conditional or

joint probability distributions to represent probabilistic dependencies

can depend on factors other than the required numbers of probability
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assessments. Conditional probabilities are often difficult to assess

when the state variables represent events that can occur in any order.

When a unique sequence of events does not exist, it may not be obvious

how the dependencies in a model should be defined or assessed. Assessing

conditional probabilities in different orders can lead to conflicting

sets of probabilities. Another problem with assessing dependencies in

terms of conditional probabilites is that the subject may anchor on a

prnbability given one state of information, and then shift his probability

estimates by an insufficient amount when the state of information is

changed. To overcome these difficulties it may be necessary to assess

the dependencies among aleatory state variables in several different

orders to expose and correct inconsistencies, or assess the dependencies

in terms of joint probability distributons.

c. Assessing Preferences

The process of assessing preferences follows from the

structure that has been defined for the preference model. If distinct

value, risk, and time preference models have been specified in the model

structure, then each type of preference is assessed separately. Other-
wise, all types of preferences are assessed together. Several assessment
techniques have been developed for use with various sorts of preference

models. Each technique requires the decision maker to make represent-

ative choices, and then this information is used to infer his preferences

over a certain range of outcomes. The techniques differ in the way that

the representative choices are presented to the decision maker, and the

manner in which his responses are processed to specify the preference

model.

One way to encode preferences is to ask a decision maker

to choose between two possible combinations or outcomes, or, if his risk

attitude is being encoded at the same time, between probability distri-

butions over the outcomes. This is called the "paired comparison" method.

If the decision maker indicates a preference, the outcomes (or probability

distributions over outcomes) are modified to find a set of outcomes (or

distributions) between which b s indifferent. If the outcomes are
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-~ deterministic, the decision maker's preferences can be represented by

indifference curves in the space spanned by the outcome variables. If

the decision maker is offered choices among probability diutributions

over the outcomes, It is generally not possible to draw indifference

curves, and a large number of inquires may be necessary to establish hisI

preferences. Thus paired comparisons are usually made between combina-
tions of outcomes that are known with certainty, which is equivalent to

splitting the preference model into a separate value model and risk pref-

erence model.

The paired comparison method can be generalized slightly

outcomes In terms of his preferences. This amounts to making a number

of paired comparisons at the same time. In any case, when this method

Is applied to deterministic outcomes, it produces an ordinal value
measure since the decision maker is never asked to say how much fie likes

one combination of outcomes more than another. If the paired comparison

method Is applied to probabilistic outcomes, it produces a cardinal util-

ity measure with the properties discussed in Chapter III.

Another way to encode preferences is to ask a decision

maker to specify tradeoffs among various outcome variables. This meansI

that he must specify how much he would be willing to change one outcome

variable in an undesirable direction in order to make a desirable change

in another outcome variable. By specifying such a tradeoff, a decision

maker defines two sets of outcomes between which he is indifferent:

the original set of outcomes and a new set in which two of the outcomes

have been changed. This method of assessing preferences is almost always

used with deterministic combinations of outcomes, which means that a sepa-

rate risk preference model is required. It also means that the tradeoff

method can usually be used to develop indifference curves. Since thle de-I cision maker is asked to specify only deterministic combinations of out-
comes among which he is indifferent and not how much more one combination

is worth than another, the tradeoff method produces at ordinal value mea-

sure.
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The value measures produced when the paired comparison and

tradeoff methods are applied to deterministic combinations of outcomes

are often inLerpreted as cardinal quantities, even though both methods

produce ordinal quantities. As explained below, this interpretation can

be justified if the value measure is defined in terms of an appropriate

outcome.

maker's preferences are defined as a ranking of all possible combinations

of outcomes. This ranking Is usually extrapolated from his choices among

representative outcome combinations. The preference ranking can be rep-

resented graphically as indifferences surfaces or curves, as shown in

Figure 4.2(a). This figure shows some of the Indifference surfaces that

might be assessed for three outcome variables x , y , and z. The

assessed value model maps the combinations of outcomes represented by the
three indifference surfaces-- SIS, and S --into three levels of

the value measure-- v, , and v3  If the combinations of outcomeni
233

corresponding to the S indifferences surface are preferred to those
corresponding to the S2 indifference surface then v3  exceeds v2

Thei amount by which v exceeds v2  is Irrelevant for defining prefer-

ences. In fact, any positive, monotonic transformation could be applied

to the value measure and it would still describe the same preferences and
indifference surfaces. The transformation would change the values of

V1 v ,and v3 but not their ranking; hence, a preferred combina-

tion of outcomes would still have a higher value measure.

There are many possible ways to define the value measure,

since it is arbitrary within a positive, monotonic transformation. One

way the value measure could be defined I.s in terms of the outcomes. For

instance, if for any combination of outcomes, there exists another combin-

ation whose outcomes are all zero except for one particular outcome such

that the decision maker is indifferent butween the two combinations, then

the value measure can be defined as that non-zero outcome. This is shown

in Figure 4.2(a). The three indifference surfaces-- S1 , 0S~ and S3 -

each contain one combination of otitcomes where x and y are zero. These

outcome sets correspond to the points where the indifference surfaces
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(b) INDIFFERENCE CURVAES WO HRENEOUTCOM VARIALE

FIGURE 4.2 INDIFFEHP.NCE CURVES ON SURFACES

intersect the z axis, and the values of z for these outcome sets are

i . z and 33*These values of a can be used as the val-ý.e measure

since preferred combinations of outcomes have larger values of z
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If the value measure is defined by a cardinal outcome

variable, then the value measure can be treated as a cardinal quantity.

For instance, if z in Figure 4.2(a) is incremental wealth (measured

in dollars, for instance) and z3  is three times z , then it is pos-

ble to interpret a set of outcomes represented by a point in the indif-

ference surface s3 as being worth three times as much as a set of out-

comes represented by a point in sa. In particular, the value measure

for sets of outcomes involving only x and y can be placed on a cardinal

scale by associating the appropriate value of z (wealth In this case)

with each x-y pair. Preferences among outcomes involving only x and

y can be represented as indifference curves, as shown in Figure 4.2(b).

These curves are equivalent to those shown in Figure 4.1(a) where the

indifference surfaces-- S1 , S 2 , and S3 , and the value measures for

these indifference curves are zI , z2 , and z36

Often Indifference curves such as those shown in Figure

4.2(b) are assessed together with an equivalent level of some other outcome,

hut without an assessment of the complete indifference surfaces shown in

Figure 4.2(a). Typically the decision maker is asked, "How much of one

particular outcome would you accept In place of a given set of outcomes

(or in place of any other outcome set that you find equally desirable)?"

In this way, a situation with non-monetary outcomes might be evaluated in

monetary terms. However I: Is not necessary for the value measure to be

defined in terms of money in order for it to be considered a cardinal quan-

tity. Any well-defined, cardinal, quantitative outcome--such as damage

to the enemy or lives lost--will suffice.

If the value measure Is not defined in terms of a cardinal

outcome variable, it cannot be treated as a cardinal quantity. For

example it is not appropriate to ask a decision maker to state how much

more he likes one combination of outcomes than another, or to specify
the relative "value" or "utility" of two sets of outcomes. In this

came the decision maker is asked to specify a cardinal quantiLy on an

ordinal scale. ,he response to such a request is not well defined since
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it cannot be known which scale the decision maker used to calibrate his

preferences.

A third way of assessing preferences is the multi-attribute

approach discussed in Chapter III. This method produces an individual

value measure for each of the outcomes (attributes). The individual

value measures must be assessed as cardinal quantities so that they can

he combined to form a single, composite value measure. This means that

each of the value measures must be defined in terms of a cardinal outcome

variable. It is not necessary that all of the individual value measures

be defined in terms of the same outcome variable, but the process of com-

bining the individual value measures requires feoer assumptions if this

in the case. In any case, asking a decision maker to define his prefer-

ences with respect to each of the outcomes (attributes) in terms of "value"

or "utility" produces a set of ordinal quantities that cannot be alge-

braically combined to produce a composite value measure.

It is often the case that several individuals with dif-

ferent preferences are involved in a decision. A complete analysis of

such a situation requires consideration of the alternatives open to each

individual to influence the primary decision. Game theory and social

choice theory are appropriate for such an analysis. However, when there

is an identifiable decision maker, it is clear that his preferences will

ultimately be used to make the decision. The desires and possible actions

of others may figure into his preferences, but a decision maker will even-

tually have to choose an alternative that he thinks is best. When It is

not clear who is the decision maker, it may stilt be possible to analyze

a dectsion situation and show that the range of preferences relevant to

the decision all lead to the same peferred alternative. At a minimum,

an analysis of a situation in which there is no single decision maker can

focus debate on those preferences issues that lead to the selection of

different alternatives.

If it is necessary to assess a separate risk preference

model, the decision maker is asked to make several representative choices

among probability distributions over the value measure. Typically the1< 73
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distributions are simple, and the possible levels of the value measure

are chosen so that the utility associated with all but one of them is

known. The distributions are altered uitil che decision maker is indif-

ferent between then., and the urt:nown utility Is determined by equating

the expected utilities associated with the two distributions. Often it

is assumed that the decision maker's risk aversion is constant over a

gJlen range of value measures. In this case the decision maker's choices

among referenpr lott,:rIes are used to determine and verify the constant

level of risk aversion. The most common assumption -iade with respecc to

risk preference is that the decision maker is risk neutral. This means

that hn is assumed to choose the value distributions with the highest

expected value.

Methods currently used for assessing time preference are

clumsy at best. Typically It is assumed that the decision maker's time

preference can be represented by a constant discount factor, which is

then treated as a system variable. Mure complicated and realistic time

preferences are usually assesied by considering the possible occurrences

of an event in differe'- time periods to be different outcomes, and then

using the methods discussed above to a•;sess preferences among ,utcomes.

This amounts to including time preference in the value model and not con-

structing a separate time preference model. However, recent results

(1) indicate that practical methods ifor assessing a separate time pref-

erencE iodel are posoible, if certain assumptions are made about the form

of a decision maker's aversion to variations in the value measure over

time.

B. Analysis

As shown In Fijure 4.1, there are three steps in analyzing a deci-
sion model: the solution of the model, sensitivity analysis, and deter-
mination of the value of information. The solution of the model to find

the reeommended alternative and the corresponding distribution of possible

outcomes is primarily analytical; it forms the basis for the other two.

.nsitivity analysIs is used to determine the relative importance of model
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• ' components and thus guide efforts to revise and improve the model. Deter-

mining the value of information provides the basis for decisions to g,'~her

new information, which can be used to update or restruct~ure the model.

1. Model Solution and Decision 0 timizatil.on

-• ~There are several ways to solve any decison model. Which method

"'•is most efficient depends on the nature of the model and the accuracy re- I
S•quired in the solution. Even if a model has been constructed so that it

can be solved using a particular technique, there may be other solution

techniques that are equally if not more efficient. For example, a dnci-

sion tree can be solved using direct processing of the tree structure,

proximal analysis, Monte Carlo techniques, dynamic programming1 and linear

programming. Some of these soluti on techniques are relatively ineffi-

cient, but they can provide insights not produced by other techniques.

For inctance, determining the second-best decision strategy in a compli-

c~ated decision tree is difficult using procedures that process decision

trees di.-ectly. However, a linear programming solution of the same prob-

lem easily produces the desired result. Switching from one solution

technique to another may require a reformulation of the decision model,

but the effort involved is often justified by the saivings in computa- i

tional effort re~quired to solve the model.

The direct solution of decision trees, one of the basic types i

j of models used in decision analysis, is discussed in any elementary text

on decision analysis [13]. This solution techuique, sometimes called

"rolling hack" a i '. sion tree, is usually adequate for simple decision

problems. H4~wever, a characteristic of deci~ion trees is that they tend

to grow very rapidly as the size of the model is expanded. At present,

it is not uncommon for analysts to utilize decision trees containing

• , thousands, or even millions, of nodes. Even with the use of automated
d~cision aids, straightforward procedures~ for analysing decision trees

can become time-consuming and expensive. A method of overcoming this

S~problem, by eliminating redundant portions of a decision tree, is de-

scribed in Chapter V.
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Another way to analyze large probabilistic models is to use

approximate methods for solving them. Perhaps the most common of these

is the Monte Carlo method, which involves repeatedly sampling the proba-

bility distributions for the aleatory state variables and then solving

tho remainder of the decision model deterministically. If this process

is carried out many times for each of the alternatives available, the

deterministic model solutions will collectively approximate the distri-

bution of outcomes associated with each alternative. The Monte Carlo

method has the advantage that it does not require probabilistic process-

ing of the model, and the disadvantage that it may require a very large

number of deterministic model solutions before an adequate approximation

of the distribution of outcomes can be obtained. Futhermore, if there

are a large number of alternatives (which is often the case when there

are several decision variables), a prohibitively large number of determi-

nistic model solutions may be required to find the distribution of out-

comes associated with each alternative.

Approximate methods have also been developed for analytically

processing probabilistic models (6]. These methods, called proximal

analysis, make it possible to determine approximate values for the mean

and higher moments of an uncertain outcome in terms of the moments of

the distributions for the aleatory state variables, without completely

solving the model for the probability distribution over the outcomes.

The accuracy of the approximations depends on the nature of the transfor-

mations from the aleatory state variables to the outcome variables. The

advantage of proximal analysis is that it approximates moments of the
distribution of outcomes without repeated deterministic solutions or a

complete probabilistic solution of the decision model.

A complete description of all of the methods available for an-

alyzing decialon models, including probabilistic models, is beyond the

scope of this report. However the various analytical methods are well

documented, and are probably the most clearly defined elements of the de-

cision analysis process [4,12,13], The importance of these methods for

the overall process of modeling and analyzing decisions is that they de-

termine the cost, and even the feasibility, of using the model developed

7A 6ý
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by the other steps to gain insight into a decision situation. The avail-

ability of an efficient solution technique can justify the development of

a complex decision model, as long as the model is an adequate represents-

tion of the decision environment and not just one that is compatible with

the solution technique. Thus solution techniques are a guide to the mod-

eling process since they determine whether the benefits to be derived

from the model will exceed the cost of analyzing it.

2. Sensitivity Analysis

One of the basic tools for analyzing decision models is sensi-

tivity analysis. By determining the sensitivity of one model component
to changes in another, one can gain insight into the relative Importance

of various components and the effect that modeling assumptions have on

the output of the model.

There are a number of ways to measure the sensitivity of one
parameter to another. If both parameters are known with certainty, deter-
ministic sensitivity analysis can be used. The most common way to carry

out this form of analysis is to vary one of the iarameters over a spec-

ified range, and plot the corresponding values of the second parameter

as a function of the first parameter. The resulting graph, showing the

pairs of parameter values that fit the model, describes the global sensi-

tivity of the parameters to each other. The analysis is global in the

sense that the relationship between the two parameters is described over

a given range. Alternatively, the local sensitivity of one parameter to

at which small changes in one parameter cause the other parameter to change.

Local sensitivities are measured in terms of partial derivatives. All

sensitivity analyses can be classified as either global or local.

Another way to classify sensitivity analyses is by whether they

produce open-loop or closed-loop sensitivities. A closed-loop sensitivity

is one in which the decisions embedded in the model are reoptimized when-

ever one of the parameters is changed. An open-loop sensitivity, which

is usually easier to compute than a closed-loop sensitivity, is one in
which the decisions in the model are fixed throughout the analysis even
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though changing one of the parameter values over its range might change

the optimum decision.

For uncertain model parameters, a probabilistic sensitivity

analysis is possible. Typically this analysis is carried out by holding

an aleatory state variable co.,,t-. ý.t each of its possible levels and

observing the effect on the o',c., Istribution. However, there are

several other ways to conduct a p !.istic sensitivity analysis. In

general, a probabilistic sensiti' .,volves modifying the probability

distribution for one state variab t ann observing of the effect on the

distribution for other state variables. The procedures for probabilistic

sensitivity analysis are not as well defined as those for deterministic

sensitivity analysis because there is a variety of ways in which one can

modify a probability distribution. For example, in one analysis it might

be desirable to change the variance of one distribution while holding its

mean constant; in another analysis it might be preferable to vary alge-

braic coefficients in the expression for the probability distribution.

As with deterministic sensitivity analyses, probabilistic sensitivity

analyses can be either global or local, and either open-loop or closed-
iA

loop.

Joint sensitivity, the effect of varying several model compo-

nents simultaneously, is more difficult to calculate and visualize. The

I problem with calculating joint sensitivities is that theri can be very

many ways to vary several variables simultaneously. Furthermore, visual-

9 izing global joint sensitivities requires plotting the dependent variable

in several dimensions. One way to avoid these problems is to determine

local joint sensitivities in terms of gradients. Gradients can be repre-

sented as n-dimensional vectors and are much easier to comprehend than

n-dimensional functions. Joint sensitivities to probabilistic quantities

are even harder to visualize than joint deterministic sensitivities, and

are therefore rarely used.

One of the primary reasons for carrying out i sensitivity anal-

yais is to manage the growth of a decision model. Decision models are

commonly designed from the "top down." A few aggregate system variables

are defined first, and then they are-defined in terms of increasingly
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detailed a.ad specific variables. For example the outcome of a public

sector decision might be a measure of social profit. However, directly

estimating this measure for each alternative is equivalent to selecting

an alternative by intuition. To model the situation, the measure of so-

cial profit can be divided into benefits and costs. Both of these vari-

ables can be further expanded by defining them in terms of more specific

quantities until a level is reached where experts are available to esti-

mate the inputs to the model. The process of expanding the model is

continued until it is no longer economic to do so.

Figure 4.3 shows how top-down modeling and sensitivity analysis

affect the size of a model. At the start of the modeling process, intuition

a.
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and direct assessment are used to predict the outcomes and some inferior

alternatives can be discarded without formal analysis. An the modeling

process progresses, the size and complexity of the model increase. Then

sensitivity analysis is used to eliminate relatively unimportant variables,

and the size of the model contracts.

The process of modeling and analyzing a decision rarely ends

after the first application of sensitivity analysis. Instead, the

information provided by a sensitivity analysis is used to identify

areas where additional modeling is required. This leads to another

expansion of the model as shown in Figure 4.4. The result is that the

size of the model alternately expands and contracts, with the average

model size increasing gradually as important variables are defined,

tested with sensitivity analysis and retained.
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Each time the model expands and contracts the decision analysis

process has proceded through the steps of structuring, assessment, model

solution, and sensitivity analysis, as shown in Figure 4.1. Eliminating

unnecessary model components is one of the important characteristics of

decision analysis. If a decision model were developed without discarding

relatively unimportant variables, the size of the model would grow rapidly

as shown by the dashed line in Figure 4.4.

3. Determining the Value of Information.

Sensitivity analysis is not the only tool for evaluating the

relative worth of various model components. Determining the value of

information can also supply a measure of the importance of state variables,

in addition to guiding efforts to gather new information.

One of the advantages of a probabilistic model is that it can

be used to calculate the value of information. Information changes the

uncertainty inherent in a decision, and this change can be incorporated

in a probabilistic model since uncertainty is represented explicitly.

In situations where the decision maker's attitude toward a risky situa-

tion is independent of his wealth, the value of information can be deter-

mined by solving a decision model twice--once with the original state of

information and once with new information--measuring the difference in

the "certain equivalent". The certain equivalent is the deterministic

level of the value measure that the decision maker views as equivalent

to a probability distribution over the value measure. However, in sit-

uations where a decision maker's attitude toward a risky situation depends
on his assets, the cost of obtaining information must be included in the

decision model. The value of information is equal to the cost such that

the decision maker is indifferent between purchasing the information or

acting without it.

As shown in Figure 4.1, the possibility of purchasing informa-

tion presents the decision maker with somw secondary, information-gathering

decisions in addition to the primary decision. The two types of deci-

sions are often confused. For example, decisions to allocate resources

to .ntelligence activities are information-gathering decisionsa they
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should be analyzed in the context of other decisions that can be influ-

enced by the information resulting from the Intelligence activities. If

the primary decisions for which the information is required are not

Included in the model, it is necessary to assess the value of informa-4

tion directly. Unfortunately, humans are notoriously poor at assessing

the value of information. Determining the value of information often

produces the most counter-intuitive results of a decision analysis.

The value of information is usually determined for information

about aleatory state variables. However, when the dependencies among

state variables are uncertain, it is still possible to calculate the

value of information about them. In practice the same procedures are

used to determine the value of information that would alter the decision

maker's perception of a problem and thus require significant structural

changes in the corresponding model. If the manner in which the informa-

tion changes the model can be anticipated, an expanded version of the

model that includes this possibility can be used to calculate the value

Of the information. However, information that changes an individual's

perception of a decision is often unanticipated. Unfortunately no amount

of modeling will allow one to evaluate unanticipated events or information.

Decision models, like decisions, can only be based on what the decision
maker knows, or can learn about the situation.

tThe value of information can be used as a guide to further

variable will produce isa better resnestimate toof the furthber then moeigthe ofmodel-stea

ing may be justified if the value of information about that variable is

high relative to the cort of the additional modeling. In atny case, new

infrmaionalways leads to an updating of the state of information repre-

sented in the model.

Calculating the value of information can be difficult in large

models. One way to overcome this problem is to use approximate methods

to determine the value of information; these methods are discussed in
Appendix B. A more common way to simplify the calculations is to deter-
mine the value of perfect information about some of the state variables,

and then use the result a. an upper bound for the value of realistic,.
j"
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imperfect information about those variables. The value of perfect infor-

-nation is relatively easy to calculate because it usually does not require

updating any of the probabilities in the model.

Even the value of perfect information becomes difficult to cal-

culate if tHb probability distribution associated with state variables

depends on decisions, or if information about a state variable depends

on decisions. The problem is that the probability that the information

will be of a particular form depends on a decision which, in turn, may

depend on the information. This problem can be overcome by breaking up

a state variable with decision-dependent information into several separate

state variables, one for every alternative upon which the information

depends. However this drastically increases the size of a decision model.

Furthermore, the new decision-dependent state variables are not necessar-

ily independent of each other, which necessitates assessing the dependen-

cies among them. The problems associated with decision-dependent infor-

mation are discussed in Appendix C.

Determining the value of information is also more difficult

when it is possible to buy several pieces of information--called

"observables"--sequentially. Learning one observable can affect not

only the primary decision, but also information-gathering decisions with

respect to the other observables. As shown in Figure 4.1, the new infor-

mstion contained in the first observable is used to update the model,

and then additional information-gathering decisions must be made before

the primary decision is made. Since knowing the first observable can

help with both information-gathering decisions and primary decisions,

the value of the first observable is greater than it should be if it

could affect only the primary decision. The prices of the observables

affect the decision maker's willingness to buy additional information,

and therefore the amount that the value of information is increased by

the possibility of buying additional information depends on the prices
of all the observables, The manner in which decision problems with

sequential information can be solved using computers in discussed in •

Appendix D# •

- :: °.;L- '-j8 3



If a decision problem contains several different decisions,

it is necessary to know which decisions will have been made at the time

information is received in order to calculate the value of the information.

The question of the relative timing of information and decisions is

described in terms of the flexibility of the decisions A flexible deci-

sion is one that can be delayed until information can be gathered to guide

the decision. The value of a piece of i.nformation depends on which deci-

sions are sufficiently flexible to allow their postponement until the in-

formation arrives. Thus, it may be necessary to refer to the value of

information about a state variable in relation to the flexibility of a

given decision variable. The subject of flexibility is discussed in

Appendix E.
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V DECISION MODELING CONCEPTS

This section deals with some of the conceiptual tools that are used

to construct and analyze decision models. These concepts are the prac-

tical application of the modeling and analysis process described In

Chapter IV and their use defines the characteristics of a decision model

as described in Chapter III. It is anticipated that decision modelirg

concepts such as those described in this section, will form the basis for

a system of automated decision aids.

The list of modeling concepts described in this section Is not exhaus-

tive. However the discussion starts with bacic ideas that are common to

almost any decision model, and proceeds to those applied modeling tools

that have been useful for a broad range of decision problems. The more

applied concepts described here can form the basis for automated decision

aids, and as new approaches to modeling decisions are developed, a suit-

ably designed system of decision aids can be expanded to incorporate them.

Decision models are often conceptualized and constructed in both

algebraic and graphical terms. Sometimes g-aphical representations of a

model are more useful than algebraic forms, and vice versa. However,

there is no single conceptual approach that is "best" for modeling a par-

ticular decision. One individual might prefer to visualize a complex de-

cision situation in terms of computational graphs, tree structures, block

diagrams, or multi-dimensional graphs, while another person might deal

with the same problem using systems of equations, alpha-numeric lists of

data, or algebraic computer programs (FORTRAN, ALGOL, LISP, APL, etc.)

In fact there is value in using several different conceptual approaches--

both algebraic and graphical--for the mama problem. Different approaches
tend to illuminate different aspects of a decision problem. It is often

helpful to switch back and forth between algebraic and graphical repre-

sentations of the same problem, using whichever concepts facilitate each

s.uep in. the proceesi o-f modeling and, analysing decisionas.
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For example, decision trees are often used 1o represent complex de-

cision situations. However, decision trees easily can become so large

that they cannot be visualized in their entirety. As a result, the struc-

ture of a tree may be summarized in a more compact graphical notation, or

described by a series of algebraic statements. Since these compact repre-

sentations are often incomplete, it may be necessary to use several of

them to completely specify a large decision tree. Each representation

supplies a different perspective on the nature of the model.

A. Basic Concepts: Entities and-Operators

All models have In common certain fundamental building blocks,

called entitles and operatcrs. Entities describe the state of the envir-

onment ot one's perce.ption of the environment, and operators describe the

way in which entitles are modified and related to ,ach other. Fntities

can be numbers, arrays, functions of time, strings of alpha-numeric data,

algebraic variables, logical variables, complex variables, etc. Opairators

transfo.m one set of entities into another, and describe dependencies or

relationships. The definition of entities and operators can be based on

algebra, set theory, probability theory, Boolean algebra, linear algebra,

calculus, or any other branch of mathematics or logic.

For example, entity E could be the demand for a particular com-

modity at some point in time. Entity E2 could be the eqtiilibrium price

of the commodity in a competitive market. Operator 0 could transform

the demand Into an equilibrium market price. An economist might view

this transformation in terms of a demand curve like the one shown in

Figure 5.1(a). However, the same process can be viewed as an operator

(the demand curve) transforming entity E1  (demand) into entity E2 .

(price) as shown in Figure 5.1(b).

1, The Promertiesnof OPeratoro

Operators are defined as functions that produce a value for

each output for every possible combination of inputs, Furthermore,

.. operators have a direction; they transform inputs Into output@, but not

vice versa. However, it may be possible to reverse the transf-ormation
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defined by an operator, and thus form a now operator with different

inputs and outputs. One implication of the directional nature of oper-

atort is that an equation defines several operators. To define a unique
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I operator, an equation must be accompanied by A specification of its inputs

I and outputs. For example, the equatlon X - Y + Z describes three oper-

ators, each of which maps two of the entities-- X ,Y ,and Z --into a

third.

The directional nature of an operator and the requirement

that it produce an output make it possible to avoid a number of computa-

tional difficulties, such as nonexistent or multiple outputs. However,

these requirements may make it difficult to reverse an operator's inputs
and outputs. The mapping defined by an operator need not be "one-to-one"

or "onto." If the operator determines entity Y from entity X , one-

to-one"l maans that there is a unique value of X for every value of Y.

"Onto" means that there is some value of X corresponding to every possi-

ble value of Y.

If the mapping from X to Y is not one-to-one, certainI

values of Y will have several corresponding values of X *If the

mapping from X to Y is not onto, certain value~s of Y will have no

corresponding values of X. In either case, it is difficult to inter-

pret the relationship between X and Y as one In which X is detrL.-

mined from Y I n other words, the relationship between X and Y

contains an implicit direction: X is the input and Y is the output.

It is possible to reverse the inputs and outputs of an operatori

that is not one-to-one and onto by defining a new operator with cert:ain

special conventions. For example, the equation Y X is ambiguou~s

if it is viewed as a transformation from X to Y .However, if this

equation is used to define ar~ operator with Y as the Input and X as

the output, it can produce more than one output or no output at all, de-pendng n th vaue o Y n orer o ovrcoe ths dfficlty on
could define the oper&Lor with the convention that X is always the pos.-

itive square root of Y if Y is greater than or equal to zero, and X

is zero if Y is less than zero. Making such conventions an explicit

part of an operator's definiton eliminates ambiguities such as the one

in this example.
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2. Ambiguous Comb; nations of Entities and Operators

Although the definition of operators precludes ambiguous or
impossible transformations among entities by a single operator, combina-

tions of operators can produce insoluble models. For example, suppose

operator 01 determines the value of algebraic entity Y by adding 1

to the value of entity X , and operator 0 determines the value of
2

X by adding I to the value of Y. A model containing both of these

operators would never reach a solution since there are no values of X

and Y compatible with both operators. There are other ways that two

or more operators can be inconsistent. For instance, a model might

contain two operators producing different values of the same output

entity. Obviously, a model designer, or an automated modeling aid,

must detect and correct inconsistencies among operators if a usable

decision model is to be constructed.

3. Connection Rules

The definitions of ertities and operators, and the manner in

which they are connected to each other, can be specified seperately.

The topological connections among operators and entities are specified

by "connection rules." These rules determine exactly which entities

are the inputs and outputs of each operator.

In small models it is typical for specification of the links

beth.-en operators and entities to be included in the definitions of

operators. For example, the demand curve for a particular commodity

can be viewed as an operator transforming one specific entity (demand)

into another (price). In this case the connection rule linking price

and demand via the demand curve is part of the operator definition.

While separate specification of the connections between

entities and operators may be cumbersome for simple problems, it can be

a powerful technique for generating large models. For a typical large

model with thousands of elements, a relatively small number of general

* operators and entities can be defined and then operator rules can be

* used to link them together. A connection rule might specify that one
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type of operator is used many times in a model. For example, the

I operator representing the demand curve mentioned above might be defined

in general terms with input entities that specify the exact shape of

the curve. Then a connection rule could be used to specify several

demand curves for various quantitift.

The distinction between connection rules and operators is

similar to the distinction between the definition of a variable and its

specific value. Connection rules show exactly where an operator is used

in a model, and the definition of the operator shows how its outputs are

derived from its inputs.

When operators are defined in general terms so that they can

be combined with connection rules to specify a large model, it is

typical for the operator definitions to include indices. Indices are

special inputs to the operator that help define its function. For

example, an operator representing demand curves might include an index

specifying the shape of the curve and the commodity under consideration.

Several indices can be used in a single operator definition. For example,

one index might specify that the demand curve is for coal and another

might. npec_-fy 0,:t - represents demand in 1980. Changing the indices

might let the same operator specify the demand fo'r crude ojil in 1975.

Several operators and their respective inputs and outputs can

be combined to form a compound operator. For example, a simple model

of a coal-burning power plant might consist of a single operator that

transforms the rate of fuel consumption and the energy content of the

fuel into the power produced by the plant. The operator that carries

out this transformation is shown in Figure 5.2(a). However, in a more

detailed model of the power plant's performance, this operator may be.

decoimposed into several others. Figure 5.2(b) shows an expanded model

in which several operators and entities are used to describe the trans-

formation defined by the original operator.

4. Graphs and Trees

When operators and entities are linked together, either

individually or through the use of c'r~inection rules, the result is a

90

~o



S' CONSUMPTIONJ

•L CONTENT'OF FUEL

W(a SIMPLE MODEL

•EFFICIENCYJ

•. J POWER

I CONVERSION
S~SYSTEM

HEATTENTER

PRODCEDPRODt'CED

SuE~j 'FUENL

(b) EXPANDED MODEL

FIGURE 5,2 MODELS OF A COAL BURNING POWER PLANT

computational graph that spet• ies the structure of a model. Graphs

can be used to specify any of the models used in decision analysis:

decision trees, Markov processes, financial models, material flows over

time, fault trees, etc. Tn fact, given the very basic nature of opera-

tors and entities, it is difficult to conceive of a model that cannot be

put into the form of a grailh. This is not to say that graphs nrp thp

most efficient way to model ever;' decision problem, but rather that they

are sufficiently important that they should be incorporated into any

general modeling language.

Graphs can be classified according to the degree to which they

are interconnected. One of the simplest forms of graphs is a tree. All

the linkages of a tree are directed etcher from or to a unique starting

point or origin. There must be only one path that connects any pair of
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nodes, and if on(. of those nodes 1.s the origin, all of the operators along

that path must be oriented in the same direction. Figure 5.3(a) shows an

example of the tree.

A slightly more general version of a computationaL graph is a

coalesced tree. A coalesced tree is one In which the branches are allowed

to coalesce or connect together. In a coalesced tree there can be mul-

tiple paths between each pair of nodes, but if one of the nodes is the

origin, then all of the operators along all of the paths must be oriented

in the same direction--either toward the origin or away from the origin.

Figure 5.3(b) shows an example of a coalesced tree.

Trees and coalesced trees have the advantage of not containing

loops. A graph contains a loop if two nodes in the graph are connected

by two or more paths, such that all of the operators along one path lead

from the first node to the second and all of the operators along another

path lead in the other direction. An example of - graph containing a

loop is shown in Figure 5.3(c).

The existence of loops makes it much more difficult to process

the computational graph, but it also makes it possible to simplify the

structure of the graph. Conventions must be established for dealing with

loops in graphs, but once this is done, it may be possible to represent

very large (in fact, infinite) decision problems in compact form. For

example, a Markov process can be represented as an infinitely large deci-

siorn tree. Although a decison tree may be easier to process than a Markov

diagraw, the unbounded nature of the decision tree makes it impossible to

solve completely. On the other hand, Markov processes can be represented

and solved using relatively siimple and compact grcphs cnntaining loops.

B. Function Graphs

Specific types of entities and operators can be used as applied mod-

eling tools. One such tool is a "function graph", a graph composed of

entities that are algebraic or logical variables (including arrays and

vectors), and operators expressed in the form of equations. Typically,

function graphs are used to construct deterministic models, but they may

be extended easily to include probabilistic relationships. The following
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discussion shows how function graphs can serve as a basis for developing

decision models and how they could be implemented as part of a computer-s

ized system for decision analysis.

1. Using a Function Graph to Represent a Model for Choosing

Between Alternative Missile Systems

Analysis of a choice between competing weapons technology would

likely result in the development of a decision model. The model would

consist of important factors influencing the decision and logical and

possibly algebraic dependencies among these factors. If entities are used

to represent the factors represented in the decision model and operators

are used to represent logical and algebraic dependencies, the decision

model may be represented graphically. The proposed technique of graphical

representation has been applied to a hypothetical model for choosing be-

tween new generation missile systems. A portion* of the resulting func-

tion graph is illustrated in Figure 5.4.

In function graphs, entities are represented graphically by
blocks. The name or description of the entity is written within the block.

Entities nearer the top of the graph may be r-haracterized as being more

fundamentally important for judging the success or failure of a decision

strategy. The entity at the top of the graph is the fundamental factor

that determines the value of the decision outcome. For the model repre-

sented by Figure 5.4, the fundamental factor for judging the decision out-

come is net military value, this quantity being defined in terms of a

tradeoff between the military value of the missile and its economic cost.

Entities nearer the bottom of the graph are the more elemental properties
of the system. Those blocks which have no entering arrows -.re the most

elemental system entities.

Triangles represent operators. A line connecting an operator

to an entity means that the entity is an input or output of that operator.

Thus, for example, we see from the branching structure of Figure 5.4 that

initial investment cost for a missile system depends on system installation

*This example will be discussed further in the next section.
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An algorithm for constructing a function graph such as that of

iFigure 5.4 is in the next section, where we desribe a computerized system

designed to aid a decision maker in model development.

2. An Illustration of the Use of Function Graphs

in a Computerized Decision Aiding Svstem

What follows is a tentative description of the use of function

graphs iii an interactive computer graphics system for decision making.

We shall call this overall computerized system CADMUS,* an acronym for

Computerized Aids for Decision Makers: User System. Although the char-

acteristics we ascribe to CADMUS are within the capabilities of present

generation hardware and software technology. Our objective is not to

define the detailed characterestics of such a system. Instead we will

describe how such a system might usefully employ function graphs as a

language for model. building.

To illustrate our perception of how CADMUS might use function

graphs, we shall use the sample problem introduced above: choosing

between alternative "next generation" strategic missiles. The problem

described is purely hypothetical. It is not based on any actual analysis,

nor is it meant to illustrate how such an analysis should be carried out.

A real analysis of the problem would have to evaluate many factors other

than those considered here.

For the purpose of illustration we assume the following hypoth-

etical situation. Two proposals have been submitted to satisfy military

requirements for a new missile design. The two missiles are the ARES and

the JUGGERNAUT. While each of the proposed missiles satisfies minimum

requirements, they differ somewhat in various characteristics. Estimates

indicate that the JUGGERNAUT will be considerably cheaper to produce, will

have a more accurate but perhaps less reliable guidance system, and will

require cumplicated propellant servicing equipment that is more expensive

*According to Greek mythology, Cadmus was a Phoenician prince reputed

to have killed a dragon. Sowing the teeth of the dragon, Cadmus
produced armed men that fought together until only one remained.
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cost and on primary equipment cost. (This is deduced from the fact that

the entity block "initial investment cost" has inputs from the blocks

"installation cost" and "primary equipment cost".) We also see that the -I

number of missiles maintained ready for launch affects the cost of main-

taining missile readiness and the potential number of missiles reaching

their targets. (The block "number of missiles maintained ready" I .s out-

puts to "cost of maintaining missile readiness" ai.d "number of missiles

reaching targets".)

The relationships expressed by the operators and the lincs con-

necting them to entities are deterministic dependencies. The arrowheads

formed by the orientation of the triangles on these lines define a direc-

tion for computation. The rtile satisfied by the connections between oper-

ators and entities is that given fixed values for all entities with arrows

leading to an operator (input entities), a unique value is specified for

all entities lying along arrows leading from that operator (output enti-

ties). Thus, given installation cost and primary equipment cost, for

example, the model represented by Figure 5.4 would allow initial invest-

ment cost to be calculated.

Elemental entities (those entities in Figure 5.4 with no enter-

ing ýrrows) may be classified as decision variables or as state variables.

Decision variables are entities whose values represent decision alterna-

tives and hence are set by the decision maker. In Figure 5.4 the elemental

entities "missile system chosen" and "number of missiles maintained ready

for launch" are decision variables. Decision variables are represented

graphically by rectangular rather than circular blocks. The remaining

elemental entities represent either parameters or state variables--entities

whose values are determined by nature.

Thus, the function graph, when combined with the computational

rule assignments for each operator, graphically represents the decision

model's deterministic structure. Given specific decision alternatives

for each decision variable and specific values for all state variables,

the function graph allows the analyst to calculate the value of the fun-

damental entity whose value represents the net worth of the decision

outcome.
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to operate than similar equipment for the ARES. Initial estimates there-

fore indicate that, while the ARES is more expensive to produce than the

JUGGERNAUT, it is cheaper to maintain at operational readiness.

To simplify the discussion we shall assume for the first level

of analysis that the proposed missiles have been judged to have equal

military value. This will allow us to recommend a decision between the

two missiles based solely on cost, enabling us to avoid the complexities

of developing model components for analyzing the military value of missile

systems. As we shall discuss, however, CADMUS could be applied to the
development of military value models as well as the development of cost

models.__I

a. Using CADMUS to Build a Model

Let us imagine that CADMUS, our computerized system of de-

cision aids, has been built. How might it be used by a decision maker
interested in modeling and analyzing the missile decision problem? The

decision maker begins by sitting down at a computer terminal with video

screen and throwing a switch on the console indicating his request for

CADMUS. A list of computer aids for decision analysis appears instantlyI
on the screen, and our decision maker indicates his wish for assistance

in deterministic model development by touching an appropriate item in this

list with the light pen attached to his terminal.

Instantly, the video screen is transformed into the control

panel. Illustrated ia Figure 5.5. The center of the control panel, which
displays messages from the computer system, may also be used as a "scratch

pad" for drawing, typing, or writing. As the light pen is pulled across

this area, a displayed "ink" track appears to flow from the pen. Items

theedesof the screen are various control "pushbuttons." If one of

thes is"Pushed" (by touching the pen to it), the system performs the

indcaedaction. The buttons in the lower right hand corner of the

scenform a "calculator" for writing mathematical or logical equations.

Tebuttons on the left of the screen are for system control.
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The following question appears at the center of the video

screen:

WHAT QUANTITY OR QUANTITIES WOULD YOU NEED TO KNOW TO EVALUATE

THE OUTCOME OF YOUR DECISION?

After thinking a moment, our decision maker decides that

he would need to know two things to accurately evaluate the missiles.

First, he would need to know the total economic cost incurred in the

construction and operation of each missile system. Second, since

military decisions cannot be made on the basis of cost alone, he would[: have to know the total military value to be derived from each missile

system. He therefore types ECONOMIC COST and then MILITARI VALUE on

the computer terminal; as he does, the words appear on the video screen.

Economic costs will be fairly easy to define; military value wilL be con-

"siderably harder. As stated above, we shall limit ourselves to an anal-

ysis of economic cost. Following the development of an economi- cost

model we shall describe briefly how a military value model would be con-

structed.

The decision maker indicates that he wishes to explore

economic costs by touching the words ECONOMIC COST with the light pen.

CADMUS recponds by flashing the followi:-ig question on the screen.

SUPPOSE YOU HAD A CRYSTAL BALL. YOU MAY ASK IT ANY NUMERI-

CAL QUESTION EXCEPT "WHAT IS 'ECONOMTC COST'?" FOR WHAT

QUANTITY OR QUANTITIES WOULD YOU ASK IN ORDER TO CALCULATE

"ECONOMIC COST"?

Our decision maker knows that there ore three major cost categories for

weapon systems: research and development costs, initial investment costs,

and operating costs. He types R&D COST, INITIAL INVESTMENT COST, and J

OPERATING COST. Immediately, the video screen represents these entries

as entities in a graphical structure as shown in Figure 5.6.
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The relationship between the three entities is represented

graphically by an "operator" triangle to which CADMUS has assigned the

number I. To specify an analytic definition for the operator the decision

maker turns to the calculator in the lower right hand corner of the screen.

Thinking "economic cost will be the sum of R&D, investment, and operating

costs," he uses his light pen to write*iI
STOTAL

E CCONOMIC RD + ( AT~S> + OPERAMT ING
CSVCTCO SOST COST

by alternately touching the appropriate entity blocks in the branching

structure and operator buttons on the calculator. hs he proceeds, the

equation defining operator number one appears at the bottom of the video

screen.

The decision maker touches the light pen to the entity block

marked "operating cost" and CADMUS answers-

SUPPOSE YOU HAD A CRYSTAL BALL. YOU MAY ASK ANY NUMERICAL

QUESTION EXCEPT "WHAT IS "OPERATING COST'?" FOR WHAT

QUANTITY OR QUANTITIES WOULD YOU ASK IN ORDER TO CALCULATE

"OPERATING COST"?

"Well," thinks our decision maker, "for the basis of comparison we have

specified that the missile maintain a state of operational readiness for

a four-year period." He decides to express operating costs on an annual

basis and to provide for the possibility of using a discount rate to dis-

count the magnitude of future operaL.oxg expenditures. If - Is the discount

rate, the present value of four years of operating costs is given by

*As mentioned above, a user may "push" a "button" illustrated on the video

screen by touching that button with the light pen. In the text we rep-
resent the pushing of a button by enclosing the button label within a
rectaagular figure. Permanent control buttons are shown as rectangular
figures with sharp corners. User-defined entity buttons are enclosed
in figures with rounded corners. Rectangular blocks are not placed
around those ltkms that are entered through the terminal keyboard.
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2 3 4
PV - rOC1 + r 0C2 + r 0C + r 0C

where OCi is the operating cost in year i. Notice that it r is set to

one, operating cost is obtained by simply adding the annual operating costs

for each of the four years of operation, If r is less than one, then

operating costs in future years are not counted so heavily as current

expenditures. To input the above equation the decision maker finds it

convenient to define the entity annual operating costs as a vector whose

components are the "annual operating costs" in each of the next four years.

lie types DISCOUNT RATE and then ANNUAL OPERATING COSTS(I). The "I" will

be used to denote the year to which the annual operating cost corresponds.

The first year will be denoted by I - 1 , the second by I - 2 , and so

j: forth. The branching structure momentarily disappears and then reappears

as shown in Figure 5.7.

Using the light pen, the entity blocks shown In the func-

tion graph and the "calculator" in the left-hand corner of the screen,

our decision maker "pushes" the buttons that express operating cost as

the present value of the four annual operating costs:*

OPERATING COST - ANNUAL X, DISCOUNT
OPERATING RATE
COST _(1) "

ANNUAL X DISCOUNT 2 J
OPERATING RATE
COST (2)

ANNUAL X DISCOUNT 3 ,
OPERATING RRATECOST (3).

.ANNUL X DISCOUNT i .4 j
+ OPERATING RATES~~-KCUST! (4) ..

The equation appears near the bottom of the screen as shown in Figure 5.7.

*The up arrow button denotes that the quantity immediately following
is to be interpreted as an exponent.
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Next our decision maker touches his light pen to the block

marked "annual operating cost (I)." The familiar question, appears on
the screen this time asking him what he would need to know to define

the annual operating cost in year I. The decision maker types EQUIPMENT

REPLACEMENT COST (I) and COST OF MAINTAINING MISSILES READY (I), thinking

these to be the two main components, and uses the calculator to define

annual operating costs in year I as the sum of these quantities. The video

screen now appears as in Figure 5.8. Similarly, he defines the cost of

maintaining missile readiness as the product of the cost of maintaining one

missile ready times the number of missiles maintained ready. The screen

appears as in Figure 5.9.

Notice that while the decision maker began by thinking about

very aggregated concepts such as total military cost of the proposed mis-

sile, the branching technique leads him to consider increasingly specific

items, such as the cost of maintaining a single missile ready and the number

of missiles maintaiued ready, which are much easier to estimate. Our
decision maker may continue to use the branching technique until he has

defined all entities in terms of elemental quantities that he feels com-

fortable estimating. As illustrated by the definition of operator 2 in

Figure 5.7, operators need not be confined to simple arithmetic functions

like addition and multiplication. If necessary more general functions or

subroutines may be used to define the relationships among system entities.

b. The Completed Cost Model

For the purposes of our example, let us suppose that our

decision maker continues expanding the system model by branching from

entities until the graph appears as ahown in Figure 5.10. We imagine

at this point that the decision maker has decided that with a little

thought he can come up with estimates of values for the elemental state

variable entities, and he sees that the important decision alternatives--

"missile system chosen" and "number of missiles maintained ready"--have
been represented. Of course, the structure shown in the figure is

unrealistic because it is overly simplified and some important considera-

tions have been omitted. In a real analysis the decision maker would
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undoubtedly wish to expand the structure to a considerably higher level

of detail than that shown in Figure 5.10. Nevertheless, the function

graph of the figure will suffice for illustration.

To avoid the necessity of modeling the military value ofI;the missile systems we hnve ass~umed that the competing missiles have been
judged to have equal military value. However, similar procedures to that

described above could be used by the decision maker to construct a branch-

" ~ing structure representing the military value of the missile system chosen.

The decision maker may feel, for example, that the value of the proposed

niissile system should be assessed in two areas. First, it should provide

deterrence to a thermonuclear war. Second, if war does come the new mis-

site should help us to minimize damage to ourselves and speed a favorable

military outcome of the conflict. The function graph developed to model

the military value of the missile system might look something like that '

To specify the uperator that maps the various military

objectives into military value, each objective could be given a relative

* weight. This could be done by constructing tradeoff curves that illus-
trate the decision maker's willingness to trade one objective off against

* another. The operators In the function graph representing military value

* would thus be defined by mathematical relationships that are primarily

* subjective in nature. For this reason they might be more difficult to

determine than those used to determine economic cost, but the principle

* is the same.

tion grap combined with analytic operator definitions the func-

tio grphshown in Figure 5.10 completely specifies the deterministic

structure necessary for evaluating the economic cost of various decision

strategies. Given specific alternatives for the decision variables "missile

system chosen" and "number of missiles maintained ready," and given specific

* values for the elemental state variables, evaluation of the function graph

will produce a total economic cost.

The function graph, therefore, represents a mathematical

cost model for the missile decision. An important question is, "How good

is this model?" CADMUS supp'lies a number of tests for model evaluation,
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c. Model Analysis

CADMUS has the ability to perform sensitivity anclyses. In

sensitivity analysis, the decision analyst tries to determine the change in

the model's selection of alternative actions or outcome values that would

result from a given change in the model's assumptions. Assumptions that

produce small changes are apparently relatively insignificant, while assump-

tions that produce considerable changes are likely quite significant.
CADMUS provides for a number of automatic sensitivity calculations. For

example, suppose our decision maker felt uneasy about his estimate of the

number of times the missile will be placed on alert and therefore he is
uncertain about the amount of time the missile must maintain a state of

readiness. Naturally, the tota. time the missile must maintain a state of

readiness strongly influences missile system operating costs. He might feel

that the number of alerts could add up to anything between zero and fifty

per year. Knowing how much this uncertainty contributes to uncertainty

about total economic cost will be important in determining whether further

effort should be expended to clarify the prediction of future missile

alerts.

Suppose therefore that our decision maker wants to calcu-

late how total economic cost changes as the number of alerts is varied.

He begins by choosing a specific alternative for the decision variable:

iMISSILE SYSTEM CHOSEN JUGGERNAUT

Control buttons for the two alternatives, ARES and JUGGERNAUT, will have

been defined when the operators 11 through 17 in Figure 5.10 are defined.

Next nominal values are assigned to elemental state variables:

"AVG. DURATION OF ALERT'. 26 Minutes
EQUIPMENT REPLACEMENT'., 2.8 11I.-8 MILO

[ 1•* , ¶1.5 , 1. , 1..81 MILLION

',DISCOUNT RATE)

*To sin',lify notation, numbers that require a sequence of button
pushing operations will be represented as if they could be specifiedi::i by a single b~a.4o, For example, the notation F1..1-1 means that
the buttons L are pushed in succession.
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I ~By touching his light pen to the L SENSITIITY] control

• ~button, the decision maker signals CADMUJS that he viae to perform a

sensitivity calulation. Pushing [DEPENDENTVARIABLE1 and then OOI
• establishes economic cost as the dependent variable in the rela-

•i• tionship. Our decision maker wishes to learn how the value of this vari-

• able varies as he varies the number of yearly missile alerts between the

Svalues of neoand 50. To communicate this toCADMUS he usshislih

','pen to push the respective buttons NDPNETVRAL and • _BER•

:!•'OF ALERTS PER YEAR ' and then FROM [• F• . The video screen

Smomentarily goes blank and then appears as Figure 5.11, showing the func-

S~tional relationship established between the variables "total economic cost"

and "number of alerts per year"*

t The decision maker mayv wish to test this same sensitivity

assuming instead that the ARES missile Is chosen. If he were to set

"missile system chosen"~ to "ARES" and re-run the sensitivity, the result

might look something like that shown In Figure 5.12. An instructive

exercise would be to display simultaneously the sensitivity plots for

the two decision alternatives. By storing the results and then pushing

RECALL , our decision maker could generate the plot shown in Figure 5.13"*.

S~Such a plot illustrates the closed ioop sensitivity of "economic cost" to

"number of alerts per year." The closed Loop sensitivity shows how the

optimal value of[ the dependent variable changes with different values for

the independent variable. Assuming that the military value of the ARES

and JUIGGERNAUT are identical, the objective is to choose the decision

strategy that minimizes "economic cost". The closed ioop sensitivity is

thertfore given by the piecewise linear curve formed by the lower envelope

I o[ the two straight line curves. If the number of alerts Is anticipated

tohe roughly greater than 27 per year, the system with the lower opera-

!• | • dTetal nu emer c hl alus oresnsted he te yte o tre and relyhypthtial
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CADMUS may be requested to perform a number of additional

calculations which will enable the decision maker to evaluate his alter-

native decision strategies. For example, the decision maker may ask CADMUS

to check for dominated courses of action, that is, decision strategies that

for all possible state outcomes yield values that are equaled or exceeded

by other alternative strategies. The decision maker may ask to see the

"outcome lottery" associated with a given course of action. CADMUS will

then supply the cumulative probability distribution that shows the prob-

ability that the outcome associated with that decision strategy will have

a value less than or equal to any givcn amount.

To illustrate, suppose that our decision maker were to

specify a probability distribution for the number of alerts per year such

as that shown in Figure 5.14. CADMUS would provide a number of methods

to aid the decision maker in assessing such a diEtribution. He would

also specify probability distributions for all other uncertain variables

that strongly influence economic cost. Then, by touching his light pen

to PROB DIST ("probability distribution" control button) and then to

ECONOMIC COST , the decision maker would instruct CADMUS to produce

cumulative probability distributuions for "economic cost" under each de-

cision alternative. The system would respond as shown in Figure 5.15.

The curve associated with a given missile system shows the probability

that its total economic cost would fall below any given amount.

C. Decision Trees and Influence Diagrams

This section describes a novel approach to probabilistic modeling,

one that builds on a fundamental conceptual tool of decision analysis--

decision trees--and introduces a related concept--influence diagrams.

Together, these c(nceptual tools constitute a basic foundation for a

system of probabilistic modeling aids, in the same way that structural

graphs form the basis for deterministic modeling. In fact, further re-

ser,':ch may show that a syrl'hesis of these concepts will provide a gen-

eral tool for all types of modeling.
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1. Properties of Decision Trees and Influence Diagrams

One of the most perplexing aspects of making decisions under

uncertainty is the problem of representing and encoding probabilistic

dependencies. A probabilistic dependency is one that arises as a result

of uncertainty. For example, if a and b are known variables and

c a + b , then it is clear that c depends on both a and b , both

in a vernacular sense and in a mathematical sense. However, suppose a

is known and b is uncertain. Then c is probabilistically dependent

on b but not on a . The reason is that knowing the specific value of

b tells us something new about c , but there is no such possibility

with respect to a.

a. Probabilistic Independence

Probabilistic independence, like the assigning of prob-

ability itself, depends on the state of information possessed by the as-

sessor. Let x , y , and z be aleatory state variables of interest,

which can be either continuous or discrete. Then {xIS) is the distribu-

tion assigned to x given the state of information S. Two variables
x and y are probabilisticaily independent given the state of informa-

tion S if (x,yIS) - (xjS) (yjS) or equivalently, if (xly,S} ) (xjS).

b. Expansion

Regardless of whether x and y are probabilistically

independent, we can write

(x,yIS} - {xly,S) (yIS)

- (ylx,S) (xiS)
We call this the "chain rule of probabilities". Note that for three events

there are six possible representations.

{x,y,zls} - (xty,z,S} (ylz,S) (zIS)

(x y,z,S} {Zly,S} (yIS)

(ylx,z,S) (xlz,S) (zIS)

(ylx,z,S) (zjx,S) (xIS)
S(zix,y,S) (xlyS) (ylS)
""(zlx,yS* (yix,S) (xIS)

lie
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For n variables there are n1 possible expansions, each

requiring the assignment of a different set of probabilities and each

logically equivalent to the rest. However, while the assessments are

logically equivalent there may be considerable differences in the ease

with which the decision maker can provide them. Thus the question of

which expansion to use In a problem is far from trivial.

c. Probability Trees

Associated with each expansion is a probability tree. Thus

the expansion

t n x,y,zlS} = {xly,z,S} (ylz,S) }zls

implies the tree shown in Figure 5.16. The tree is a succession of nodes

with branches emanating from each node to represent different possible

values of a variable. The first assignment made is the probability of

various values of z. The probability uf each value of y is assigned

cundltloned on a particular value of z , and placed on the portlon of

the tree indicated by that value. Finally, the probabilities of various

levels of x are assessed given particular values of z and y and placed

on the portion of the '1ee specified by those values. When this has been

done for all possible values of x , y , and z the tree Is complete.

The probability of any particular path through the tree is obtained by

multiplying the values along the branches and is {x,y,zIS). Notice that

the tree convention uses small circles to represent chance nodes. If we

wish to focus on the succession in the tree rather than the detailed con-

nections, we can draw the tree in the generic form shown in Figure 5.17.

d. Decision Trees

If a variable is controlled by a decision maker, it is

: ,represented in a tree by a decision node. Thus if y were a decision

variable, Figure 5.17 could be redrawn as Figure 5.18. This tree states

that the decision maker is initially uncertain about z and has assigned

a probability distribution (zjS} to it. However, he will know z at the

time he must set y , the decision variable. This node is represented,

like all decision nodes, by a small square box. Once z and y are
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FIGURE 5.18 A PROBABILITY TREE
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FIGURE 5.17 A GENERIC PROBABILITY TREE
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FIGURE 5.18 A GENERIC DECISION TREE

given, the decision maker will still be uncertain about x; he has rep-

resented this uncertainty by (xly,z,S). Notice that a decision tree im-

plies both a particular expansion of the probability assessments and a

statement of the information available when a decision is made.

e. Probability ABssiRnmLnt fov Decision Trees

The major problem with decision trees arises from the first I
of these characteristics. The order of expansion required by the decision

tree is rarely the natural order in which to assess the decision maker's

information. The decision tree order is only thL simplest form for as-

sessment when each variable is probabilistically dependent on all pre-

ceeding aleatory and decision variables. If, as is usually tl'e case, many

independence assertions can be made, assessments are best done in a dif-

ferent order from that used in the decision tree. This usually means

that we first draw a probability tree in an expansion form convenient to

the decision maker and have him use this tree for assignment; it is called

a probability assignment tree. Later the information is processed into

the form required by the decision tree by representing it in one of the

alternative expansion orders. This is often called "using Bayes' Rule"

or "flipping the tree." It is a fundamental operation permitted by the

arbitrariness in the expansion order.

Consider, for example, the decision tree of Figure, 5.18

with one additional aleatory variable v added, as shown in Figure 5.19.
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FIGURE 5.19 A FOUR NODE DECISION TREE

uIS y Mi:, Si VIM, vi,

FIGURE 5.20 A FOUR NODE DECISION TREE GIVEN THE ASSERTION THAT v
WILL NOT AFFECT x

FIGURE 5,21 THE PROBABILITY ASSIGNMENT TREE
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We interpret z as a test result that will become known, y as our de-

cision, x as the outcome variable to which the test is relevant, and

v as the value we shall receive if the test indicates z , we decide y

and x is the value of the outcome variable. Often y will not affect

x in any way, even though y affects v. We write (xjy,z,S) - (xlz,S}

to represent this assertion. Furthermore, it might be the case that the

value will not depend on the test outcome but only on x. This assertion

of independence is written:

(vlx,y,z,S> - (vlx,y,S}

With these independence assertions we have the tree shown

in Figure 5.20. This tree requires the specification of {zIS) and {xlz,S):

the probability of various test results and the probability of various

outcomes given test results. But typically in sicuations of this kind,

the decision maker would prefer to assign directly the probabilities of

different outcomes {xIS) and then the probabilities of differing test

results given the outcome, (zlx,S). In other words, he would prefer to

make his assessments in the probability tree of Figure 5.21 and then

have them processed to fit the decision tree f Figure 5.20. Since

(xIS) (zjxS} - {zjS) {xlzS) - (x,zIS) this is no more than choosing one

expansion over the other. The exact processing required for the decision

tree is then the summation,

(zIS) (ZlxS) (xIS)
x

and division:

{ xlzs -z s xls(x,'S (z1Q)

Recall, however, that this whole procedure was possible only because

variable x did not depend on the decision variable y.

f. Influence Diagrams

An influence diagram is a way of describing the dependen-

cies among random variables and decisions. An influence diagram can be

used to visualize the probabilistic dependencies in a decision analysis,
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and specify the states of information for which independencies can be

assumed to exist.

Figure 5.22 shows how influence diagrams represent the

dependencies among random variables and decisions. A random variable

THE PROBABILITIES ASSOCIATED WITH RANDOM
VARIABLE B DEPEND ON THE OUTCOME OF
RANDOM VARIABLE A

THE PROBABILITY OF RANDOM VARIABLE 0
DEPENDS ON DECISION C,

THE DECISION MAKER KNOWS THE OUTCOME OF

RADOM VARIABLE E WHEN DECISION F IS MADE

THE DECISION MAKER KNOWS DECISION G WHEN
DECISION H IS MADE.

FIGURE 5.22 DEFINITIONS USED IN INFLUENCE DIAGRAMS

is represented by a circle containing its name or number. An arrow
pointing from random variable A to random variable B means that the

outcome of A can influence the probabilities associated with B. An

arrow pointing to a decision from either another decision or a random

vaiable means that the decision is made with the knowledge of the outcome
oi the other decision or random variable. A connected set of squares and
circles is called an influence diagram because it shows how random vari-

ables and decisions influence each other.

The influence diagram in Figure 5.23(a) states that the

probability distribution assigned to x pay depend on the value of y

while the influence diagram in Figure 5.23(b) asserts that x and y

are probablistically independent for the state of information with which

L. . _ . . - . . -. . . . ". -. -. . ..124
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Is) A SIMPLE INFLUENCE DIAGRAM

1b) AN EVEN SIMPLER INFLUENCE DIAGRAM

(c) AN ALTERNATE REPRESENTATION

FIGURE. 5.23 TWO NODE INFLUENCE DIAGRAMS

the diagram wes drawn. Note that the diagram of Figure 5.23(a) really

makes no assertion about the probabilistic relationship of x and y

since, as we know, any joint probability (x,yIS) can be represented in

the form (x,yIS} - (xly,S) (y(S}. However, since (x,ylS) - (ylx,S} (xIS)

the Influence diagram of Figure 5.23(a) can be redrawn as shown in Figure

5.23(c); both are completely general representations requiring no indepen-

dence assertions. While the direction of the arrow is irrelevant for this

simple example, it is used in more complicated problems to specify the

stateb of information upon which independence assertions are made.

Similarly, with three variables x , y , z there are

six possible influence diagrams of complete generality, one corresponding

to each of the possible expansions we developed earlier. They are shown

in Figure 5.24. While all of these representations are logically equiv-

alent, they again differ in their suitability for assessment purposes.

In large decision problems, the influence diagrams can display the needed

assessments in a very useful way.
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FIGURE 5.24 ALTERNATE INFLUENCE DIAGRAMS FOR Ix, Y, AlS

g. Graphical Manipulation

Since there are many alternative representations of an in-
fluence diagram, we might ask wihat manipulations can be performed on an

influence diagram to change it into another form that is logically equiv-

alent

4 The first observation we should make is that an arrow can

always be added between two nodes without making an additional assertion
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5 about the Independence of the two corresponding variables. That is,

saying that x may depend on variable y is not equivalent to saying

that x must depend on y . Thus the diagram of Figure 5.23(b) can be

changed into either of the diagrams shown in Figures 5.23(a) and 5.23(c)

without making an erroneous assertion. However, the reverse procedure

r could lead to an erroneous assertion. Creating additional influence arrows

will not change any probability assessment, bht may destroy explicit recog-

nition of independencies in the influence diagram.

r Thus, Figures 5.23(a) and 5.23(c) are two equivalent influ-

ence diagrams. They are equivalent in that they imply the same possibility

of dependencies between x and y given the state of information on which

the diagram was based.

An arrow joining two nodes in an influence diagram may be

reversed provided that all probability assignments are based on the same

set of information. For example, consider the influence diagram of

Figure 5.25(a). Since the probability assignments to both x and y are

made given knowledge of z the arrow joining them can be reversed as

shown In Figure 5.25(b) without making any incorrect or additional asser-
tions about the possible independence of x and y . Figure 5.25(c)

shows another example where the assignment of probability to x does not

depend on the value of z , and so it might appear that no reversal was

possible. However, recall that we can always add an arrow to a diagram

without making an incorrect assertion. Thus we can change the diagram of

Figure 5.25(c) to that of Figure 5.25(a), and then that of Figure 5.25(a)

to that of Figure 5.25(b). The influence arrow between y and x can

be reversed after an influence arrow is inserted between z and x.

The graphical manipulation procedure may yield more than

one result. For example, consider the reversal of the three-node influ-

ence diagram shown in Step 1 of Figure 5.26(a). Suppose we first attempt

to reverse the y to x arrow. In order that x and y have only

common influences, we must provide x with an influence from z (Step

2), before ovrforming the reversal (Step 3). Since both x and y now

are conditioned on only z ,the influence joining them may be reversed

"•~~~~~~~~~~~~~~~~~~~~~. .. .. . . . .. . •. ... " .. ...... ...........- . . . '".'Atl : •" , ;•, .. '• "• ......... •
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Wa) AN INFLUENCE DIAGRAM

(bW ARROW BETWEEN x AND y REVERSED

1©1 ANOTHER INFLUENCE DIAGRAM

FIGURE 5.25 GRAPHICAL MANIPULATION OF INFLUENCE DIAGRAMS

(Step 4). Finally, since both x and y are assigned probabilities

after z is known, the influence joining them can be reversed (Step 5).

Suppose, however, that the same diagram (Step A, Figure
5.26(b)) were transformed by first reversing the arrow joining z and

y (Step B), which is possible since y and z are based on the same

other node in Step A of Figure 5.26(b)). Then the arrow joining x

and y could be reversed (Step C) because neither x nor y now has

an arrow leading into it from any other node. Both this transformation

and the one in Figure 5.26(a) are correct. However, Step C of Figure
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5.26(b) shows that there Is no need to indicate conditioning of z on

X. Step 5 of Figure 5.26(a) contains this unnecessary but not incorrect

influence.

h. Influence Diagrams with Decision Variables

We shall now extend the concept of influence diagrams to

include decision variables. We begin with a formal definition of influ-

ence diagrams.

An influence diagram is a directed graph having no loops.

It contains two types of nodes:

- Decision nodes represented by boxes ( );

- Chance nodes represented by circles ( ).

Arrows between node pairs indicate influences of two types:

- Informational influences represented by arrows leading

into a decision node, these show exactly which variables

will be known by the decision maker at the time that

the decision is made;

- Conditioning influences, represented by arrows leading

into a chance node. These show the variables on which

the probability assignment to the chance node variable

will be conditioned.

The informational influences on a decision node represent a basic cause-

effect ordering whereas the conditional influences into a chance node rep-

resent, as we have seen, a somewhat arbitrary order of conditioning which

may not correspond to any cause-effect notion and which may be changed by

application of the laws of probability (e.g. Bayes' Rule).

Figure 5.27 is an example of an influence diagram. Chance node

variables a , b , c , e , f , g , h , i , j , k , I , m

and o all indicate aleatory variables whose probabilities must be as-t ,signed given their respective conditioning influences. Decision node

* variables d and n represent decision variables that must be set as

a function of their respective Informational influences. For example,

L .the probability assignment to variable i is conditioned upon variables

f , g , and 1 , and only these variables, In inferential notation
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FIGURE 5,27 AN INFLUENCE DIAGRAM WITH DECISION NODES

this assignment is (ilf,g,i,E}, where E represents a special S

the initial state of information upon which the construction of the entire

diagram is based. As another example, the decision variable d is set

with knowledge of variables a and c , and only these variables. Thus,

d is a function of a and c.

I. Node Terminology

One of the most important, but most subtle, aspects of an

influence diagram is the set of possible additional. influences that are

not shown on the diagram. An influence diagram asserts that these

missing influences do not exist.

In order to illustrate this characteristic of Influence

diagrams more clearly we must make a few more definitions.

A pýath from one node to another node is a set of influence

arrows connected head to tail that forms a directed line

from one node to another.

With respect to any given node we make the following definitions:

The predecessor set of a node is the set of all nodes having

a path leading to the given node.

'1
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The direct predecessor set of a node is the set of

nodes having an influence arrow connected directly to

the given node.

The indirect predecessor set of a node is the set

formed by removing from its predecessor set all

elements of its direct predecessor set.

The successor set of a node is the set of all nodes
having a path leading from the given node.

The direct successor set of a node is the set of

nodes having an influence arrow connected directly

from the given node.

The indirect successor set of a node is the set

formed by removing from its successor set all

elements of its direct successor set.

We refer to members of these sets as predecessors, direct predecessors,
indirect predecessors, successors, direct successors, and indirect succes-

sors. Figure 5.28 shows the composition of each of these sets in rela-
tion to node g.

ij. Missing Influences

We now are prepared to investigate the implications of in-
fluences not shown in a diagram. A given node could not have any arrows

coming into it from successor nodes because this addition would form a

prohibited loop in the diagram. However, it could conceivably have an

additional arrow coming from any other node.

The situation for decision nodes is relatively simple. The

diagram asserts that the only information available when any decision is
made is that represented by the direct predecessors of the decision. The

addition of a new arrow, or informational influence, would usually add to
the information available for decision making, and destroy the original

logic of the diagram. The influence diagram asserts that this information
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FIGURE 5.28 SOME SETS DEFINED BY THE NODE g

is not dlrt-ctly available; however, all or part of it might be inferred

indirectly from the direct predecessor set.

The situation for chance nodes is more complex. The dia-

gram partially constrains the probability conditioning (expansinn) order

fot chance nodes. In general, the probability assignment for a given

chance node, x , might be conditioned on all non-successors (except for

x itself). Let us call this set N , and let D be the set of directx x

predecessors of x . The set D is, of course, contained in N . The
x x

diagram asserts that the probability assignment to x given N is the
x

same as to x given D; that Is,
X

(xIN ,E) "xID E)
X x

The addition of a new arrow or conditioning influence from an element of

N to x would increase the set of direct predecessors and seem to in-
x

crease the dimensionality of the conditional probability assignment..

While this addition would not violate the logic of the diagram, it would

cause a loss of information regarding independence of the added condi-

tioning influence. The original diagram asserts that all information in

the set N that is relevant to the probability assignment to x is in-
X

directly summarized by the direct predecessors D , In classical terms
x X

with respect to x D is a sufficient statistic for N

•: . - . .133
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Returning to Figure 5.27 as an example, the probability

assignment to variable g is in principle conditioned on all variables

except g , i , j , and k . However, the diagram asserts that the

variables on which g depends are sufficiently summarized by only e

and h. This means (gta,b,c,d,e,f,h,l,m,n,o,E} = {gle,h,E}. This is

a strong and useful assertion relating many of the variables in the

diagram by the lack of arrows as well as by the ones that are present.

We have seen that an influence diagram indicates a specific,

but possibly non-unique order for conditioning probability assignments

as well as the information available as the basis for each decision.
When decision rules are specified for each decision node and probability

assignments are made for each chance node, the influence diagram relation-

ships can be used to develop the joint probability distribution for all

variables.

k. Relationship of Influence Diagrams to Decision Trees

Some influence diagrams do not have corresponding decision

trees. As in a decision tree, all probability assignments in an influence

diagram--including the assignment limitations represented by thn structure--

must be based on a base state of information, E. Unlike a decision tree,

the nodes in an influence diagram do not have to be totally ordered nor

do they have to depend directly on all predecessors. The freedom from

total ordering allows convenient probabilistic assessment and computation.

The freadom from dependence on all predecessors allows decisions to be

based on informational event sets that are incompatible with a "single

decision maker" point of view. If a single decision maker is assumed not

to forget information, then the direct predecessor set of one decision
must be a subset of the direct predessor set of any subsequent decision.
In the influence diagram of Figure 5.28 decisions d and n have mutu-

ally exclusive direct predecessor sets, (a,c) and (m). This situation
could not be represented with a decision tree.

If the informational arrows shown as dashed lines in Figure

5.29 are added to Figure 5.28, then the influence diagram can be repre-

sented by a decision tree. Many different valid decision trees can be
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FIGURE 5,29 AN INFLUENCE DIAGRAM REPRESENTABLE BY A DECISION TREE

constructed from this new influence diagram. The only conditions are

that they must (I) preserve the ordering of the influence diagram and (2)

not allow a chance node to be a predecessor of a decision node for which

it is not: a direct predecessor. For example, the chance node m must

not appear ahead of decision node d in a decision tree because this

would imply that the decision rule for d could depend on m , which is

not the case.

The situation becomes more complex when we add a node such

as p in Figure 5.30. If we were to construct a decision tree beginning

'b(.,

FIGURE 5.30 INFLUENCE DIAGRAM REWUIRING PROBABILISTIC MANIPULATION
BEFORE DECISION TREE CONSTRUCTION
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with chance node p it would imply that the decision rules at nodes d

and n could depend on p , which is not the actual case. Node p

represents a variable that is used in the probability assignment model

but that is not observable by the decision maker at the time that he

makes his decisions. In this situation, we would normally use the laws

of probability (e.g. Bayes' Rule) to eliminate the conditioning of c

on p . This process would lead to a new influence diagram reflecting

a change in the sequence of conditioning. This would result in the inclu-

sion of additional influences.

In Figure 5.31, the dashed arrow represents an influence

that has been "turned around" by Bayes' Rule. The resulting diagram can

FIGURE 5,31 INFLUENCE DIAGRAM READY FOR DEVELOPMENT INTO A DECISION TREE

*1

be developed into a decision tree without further processing of probabili-

ties. Also note that the change in the influence diagram required only

information already specified by the original influence diagram (Figure

5.30) and its associated numerical probability assignments. Thus it can

be carried out by a routine procedure.

136

0 111' N o I 3r*... ~~



The foregoing considerations motivate two new definitions.

A decision network is an influence diagram:

(i) that implies a total ordering among decision nodes,

S(ii) where each decision node and its direct predecessors

directly influence all successor decision nodes.

A decision tree network is a decision ratwork:

(iii) where all predecessors of each decision node are direct

predecessors.

Requirement (i) is the "single decision maker" condition and requirement

(ii) is the "no forgetting" condition. These two conditions guarantee

that a decision tree can be constructed, possibly after some probabilistic

processing. Requirement (iii) assures that no probabilistic processing

is needed so that a decision tree can be constructed in direct correspon-

dence with the influence diagram.

As an example consider the standard inferential decision prob-

lem represented by the decision network of Figure 5.32(a). As discussed

earlier, this influence diagram cannot be used to generate a decision tree

directly because the decision node c has a non-direct predecessor that

represents an unobservable chance variable. To convert this decision net-

work to a suitable decision tree network we simply reverse the arrow from
a r-o b , which is permissible because they have only common predecessors,
namely none. We thus achieve the decision tree network of Figure 5.32(b),

and with redrawing we arrive at Figure 5.32(c).

Specifying the limitations on possible conditioning by drawing
the influence diagram may be the most significant step in probability

assignment. The remaining task is to specify the numerical probability

of each chance node variable conditioned on its direct predecessor vari-

able. This task can be carried out using the assessment procedure dis-

cussed in Chapter IV.
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(a

(b)
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FIGURE 5.32 THE PROCESS OF CONVERTING A DECISION
NETWORK TO A DECISION TREE NETWORK

2. An Example of the Use of Influence Diagrams

The Importance of improved methods of problem modeling can best

be appreciated in an example. The example that follows is a modified
version of an analysis performed a few years ago on the value of infor-

mation gathering with respect to U.S. policy deci•ions regarding the

Persion Gulf.

Certain recent events have had a major effect on the timeliness

of the analysis. We shall present the example from the viewpoint of the

time in it was prepared rather than rewrite it to incorporate what time

has revealed.

: I"' '1¶
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a. Description of a Model Based on Influence Diagrams

The approach used in the analysis was to model the sequence

of events that might lead from U.S. policy decisions to the development

of potential conflicts in the Persian Gulf. U.S. policy decisions do not

always have a direct effect on the likelihood that a conflict will occur

in the Persian Gulf. More often U.S. actions w.11 influence one or more

of a set of interrelated and uncertain events, which in turn affect the

likelihood of conflict.
The model required subjective assessments of the probabil-

ities that uncertain events would occur in the Persian Gulf in the sub-

sequent five year period. However the probability that any one event might

occur was Influenced by whether or not other events had already occurred.

Thus, the person making the assessment had to condition his probability

estimates on assumptions about the occurrence or non-occurrence of other

events. For example, an estimate of the likelihood that a revolutionary

regime would take power in Saudi Arabia within the five-year period de-

pended on whether or not King Faisal died and whether or not the tradl-

tional government of Saudi Arabia avoided political infighting and insta-
blilty.

The model did not require a subject to estimate the time

at which an uncertain event would occur. Instead he had to estimate the

probahillty that the event would happen within the following five years,

or before the occurrence of a major war in the area.

Because the model was concerned primarily with events that

could be influenced by U.S. policy decisions, not all the events that

could affect the likelihood of a conflict in the Persian Gulf were included

in the model. In fact, in some cases, events not included in the model

might have Influenced events in the Gulf more strongly than those shown

in the model. For example, the occurrence of a revolution in Saudi Arabia

during the five year period may have been influenced more by the rate of

Saudi Arabian economic and social development than by the level of revolu-

tionary activity in the Persian Gulf. However, there appeared to be few,

if any, U.S. policy decisions that could directly influence the rate of

political and social development in Saudi Arabia. The effects of events

, , .• i•:_.:.13.
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not shown explicitly in the model were reflected, however, in the proba-

bility assessments.

Table 5.1 shows the sequence of decisions and events that

were actually used. Since U.S. decisions affecting the Persin Gulf

might have been based on information derived from several different

intelligence activities, the first step in the model was to hypothesize

the deployment of a particular intelligence activity. For the purpose

of the analysis, it was assumed that an intelligence activity would

gather information about one or more of the events described in the

model. If an intelligence activity was deployed, the United States

would receive information from this activity, predicting whether that

event would or would not occur.

After receiving this information from the intelligence

activity, the United States would make some initial policy decisions

with respect to the Persian Gulf. The alternatives available, which

would influence the general course of events in the Persian Gulf, in-

cluded continuing strong support for Israel and removing the U.S. naval

force stationel in the Persian Gulf.

While the United States made these decisions, the Soviet

Union would be making a similar set of decisions that would influence

the course of events in the Persian Gulf. From the point of view of U.S.

policy, Soviet decisions appeared as uncertain events. Soviet influence

was characterized in the model by two principal, decisions: whether or

. •not to increase the flow of military equipment to revolutionary organiza-

tions in the area, and whether or not to introduce a naval force compar-

able to the U.S. force in the Persian Gulf.

Clearly, these two choices were an abstraction of the many

possibilities available to the Soviet Union. For example, the Soviet

Union could indirectly but substantially increase the amount of military

equipment supplied to revolutionary organizations by increasing arms ship-

ments to either Iraq or South Yemen. Similarly, in choosing to introduce

naval forces into the Persian Gulf, the Russians had several options as
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Table 5.1

SEQUENCE OF DECISIONS AND EVENTS
IN THE INFLUENCE DIAGRAM EXAMPLE

I. U.S. decision to deploy and intelligence activity

II. Information received from the intelligence activity

1I. The activity reports that an event will occur.

r III. Initial U.S. policy decisions

2. The United States continues its strong diplomatic support
for Israel and continues to supply significant amounts of
military equipment to Israel.

3. The United States moves the naval force it currently has in
the Persian Gulf to a base in the Indian Ocean.'

IV. Soviet Influence

4. The Soviets substantially increase thn amount of military

equipment they supply to revolutionary organizations in the

Persian Gulf.

5. The Soviets increase their own military presence in the

Persian Gulf.

V. Arab-Israeli conflict and revolutionary activity

6. The Arabs and Israel reach a political settlement that is

acceptable to most Arabs In the Persian Gulf states.

7. There is a significant increase in the level of revolutionary
organization and activity in the Persian Gulf states.

1. VI. Instability and revolution in Saudia Arabia
8. King Faisal dies.

9. Considerable internal instability develops in Saudi Arabia

VII. Instability and revolution in Iran

11. The Shah of Iran dies.

12. Considerable internal instability develops in Iran.

13. A revolutionary regime takes power in Iran.
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Table 5.1 (Conaluded)

VIII. U.S. policy decisions to support Persian Gulf states

14. The United States gives diplomatic support and large
amounts of military equipment to Saudi Arabia.

15. The United States gives diplomatic support and large

amounts of military equipment to Iran.

IX. Conflict between Saudi Arabia and Iran
16. A revolutionary regime takes power in Qatar, Bahrain, or

the U.A.E.

17. Saudi Arabia and Iran engage in a serious military conflict.

18. Iraq enters the conflict between Saudi Arabia and Iran.

X. Conflict between Iraq and Kuwait or Iran.

19. A revolutionary regime takes power in Kuwait.

20. Iraq engag3s in military conflict with Kuwait--

possibly in an attempt to annex Kuwait.

21. Iraq and Iran enter a serious military conflict.

22. Saudi Arabia enters the conflict between Iran and Iraq.
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to the composition and strength of those forces. However, the Soviet de-

cision hypothesized in the model served as a first approximation of pos-
sible Soviet influence in the area.

Once the decisions of the United States and Soviet Union

had been specified, it was possible to estimate the likelihood of events

that set the stage for potential conflicts in the Persian Gulf. The two

events considered in this phase of the model were the future development

of the Arab-Israeli conflict and the level of revolutionary organization

and activity in the Persian Gulf states. These two events were closely

interrelated, and this relationship was reflected in the model.

V After the status of the Arab-Israeli conflict and thle level

of revolutionary activity were specified, the model considered the possi-

bility of instability and revolution in both Saudi Arabia and Iran, thle-

two major traditional powers in the area. For each country, the model

* began with the possibility that the current national leader would die

within the next five years--an important factor given the individualistic

style of government in both countries. The next step w.ds to consider the

* ~likelihood that the governiments of Saudi Arabia and Iran would experience

a period of internal instability and political turmoil, conditioned on

whether or not the current rulers of each country were living. Then, de-

pending on whether or not these events had occurred, the model dealt with

thle likelihood of revolutionary changes in government in either Saudi Ptrahia

or Iran or both.

Once the types of government in Saudi Arabia and Iran had

been determined, the United States had to decide whether or not to con-

tinue support for those Persian Gulf states. To determine whether the

type of governments in Saudi Arabia and Iran had an Influence on U.S.

policy, the model considered the U.S. support decisions after resolving

the question of revolutions. In particular, the model addressed tile

questioni of w~hether it was a good idea for the United States to continue

its support for Saudi Arabia or Iran after a revolutionary government had

taken power.

When the U.S. support decisions had been made, the model

specified all the events and decisions needed to allow estimates of the
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likelihood of major conflicts in the Persian Gulf. In a sense, the steps

numbered I to VIII in Table 5.1 defined the various scenarios, or alter-

native sequences of events and decisions, that might lead to a major con-

flict in the Persian Gulf. For each of these possible scenarios, the

model considered the possibility of a major conflict between Saudi Arabia

and Iran, and the most likely ways in which such a conflict could develop.

The model also allowed for the possibility that Iraq might choose to enter

Into such a conflict.Ii. Similarly, the model considered the possibility of a major
conflict between either Iraq or Iran, or between Iraq and Kuwait. These
two conflicts were closely related, since the Shah of Iran had stated that

he would come to the aid of Kuwait in the event of an attempted Iraqi

takeover of Kuwait. As before, the model allowed for tli, possibiltity

that the Saudi Arabians might become involved in such a conflict between
i Iraq and Iran.

By combining the occurrence or nonoccurrence of each of

the events and decisions In the model, it was possible to develop a large

number of Persian Gulf scenarios, as demonstrated in Figure 5.33. The
LI ~figure shows the scenarios in the form of a decision tree, stauting on .

the left and developing to the right. Each node in the tree represents

either a U.S. decision or an uncercain event. U.S. decisions are repre-

sented by squares and uncertain events are represented by circles.

For example, the small square to the left of the "DEPLOY ACTIVITY" branch

indicated that the deployment of an intelligence activity was a U.S. de-

cision.

By progressing from the left to the right along any parti-

4 cular path through the tree, it was possible to specify a unique Persian

Gulf scenario. For example, taking the branch marked "DEPLOY ACTIVITY"

would mean that we were considering only those scenarios in which the

United States had deployed an intelligence activity to gain information

about one of the subsequent events in the model. If an intelligence

activity was deployed, it could either predict that an event would occur

or predict that an event would not occur. If we assumed that the activity

had predicted that an event would occur, we would proceed to the branch
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marked "ACTIVITY PREDICTS EVENT," which leads to another U.S. decision.

The decision at that point was whether or not the United States should

continue its strong support for Israel. Assuming that the United States

decided to continum supporting Israel was equivalent to taking the path

marked "U.S. SUPPORTS ISRAEL" near the top of Figure 5.33. At the end

of this branch was another small square indicating another U.S. decision:I whether or not to remove the n.val force stationed in the Persian Gulf.

A U.S. decision to move the fleet out of the Gulf was equivalent to moving

down the branch marked "U.S. MOVES FLEET." At the end of this branch is

an event node indicated by a small circle, which dealt with the level of

Soviet aid to revolutionary activities and organizations in the Persian

Gulf. Thus, by continuing to take one branch after another through the

tree, we could completely specify one scenario for the Persian Gulf.

Other scenarios were specified by other paths through the

tree For example, if we took the tree branches closest to the bottom of

Figure 5.33, we had the scenario where the United States did not deploy

an intelligence activity, did not support Israel, and did not move its

fleet out of the Persian Gulf.

When we added all of the branches associated with the many

decisions and events in the model, the decision tree became so large

that it was not possible to show the entire tree in a single f.,gure.

Figure 5.34 shows the generic decision tree representing the Persian Gulf

scenarios. Here one must imagine that each of the disconnected decision

or event nodes is attached to the ends of all of the preceding brenches

in the decision tree. Connecting the various decisions and event noles

in this way would generate the entire decision tree and specify all of

the scenarios in the Persian Gulf model.

A simple calculation showed that there were approximately 6.3

million scenarios considered in this model. While many of these scenarios

were very unlikely, each contributed to the conclusions of the model.

Instead of considering only those scenarios that had the highest probabil-

*.4,y or seemed the most plausible--as one might in an intuitive analysis

of the problem--the model allowed us to aggregate the effects of many low-

probability scenarios.

146

"71 -.- ,."

•i�..�_.. -- ' "_.' - ..Al.

- ~4~ 4Li"I i. vh



Even though there were relatively few U.S. decisions repre-

sented in tha Persian Gulf model, there were a large number of policies

available to the United States. A policy was a complete description of

U.S. decisions that would be taken in response to any possible future

scenario. There were approximately 262,000 U.S. policies represented

by the Persian Gulf model.

b. Using the Model

A model as large as the one for the Persian Gulf had two

related problems. First, it was difficult to manipulate a model repre-

senting over 6 million scenarios, even using the capabilities of large,

high-speed computers. Even when the computer was capable of handling

this many scenarios, it was difficult to interpret the results without
a more efficient way of conceptualizing the problem. The second problem

was potentially even more limiting. If each of the millions of uncertain

events represented in the model required a separate probability assess-

ment, it would never have been feasible to collect the data necessary to

analyze the model and study its implications.

The answer to these problems lay in carefully defining the

dependencies among the uncertain events in the model and in using these

dependencies to eliminate redundant portions of the model. While the de-

cision tree shown in Figures 5.33 and 5.34 shows explicitly all of the

scenarios in the model, it does not show which evAnts and decisions had

to be known In order to assess the likelihood of any uncertain event.I For example, when assessing the likelihood that the Arab-

Israeli conflict would be resolved in the next five years, a middle East

expert may have wished to know whether or not the United States would

continue its strong military support for Israel. However, when assessing

the probability that there would be an increase in the level of revolu-

tionary activity in the Persian Gulf, the same expert might have been in-

terested only in whether or not there was a settlement in the Arab-Israeli

dlsputn, not in whether the settlement was brought about by a continuation

of U.S. support for Israel. In this case, the likelihood of an increase
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in revolutionary activity was independent of U.S. policy once the status

of the Arab-Israeli conflict had been specified.

To show such dependencies among uncertain events, we used

an influence diagram. The influence diagram in Figure 5.35 shows the

assumed dependencies of events and decisions in the Persian Gulf model.

* The numbers in the circles and squares corresponded to the numbered

events and decisions in Table 5.1. For example, the square containing

the number 2 represented the U.S. decision to continue giving Israel

strong diplomatic support and significant amounts of military equipment.

The circle containing a 6 represented the uncertain event that the Arabs

and Israel would reach a political settlement that was acceptable to most

of the Arabs in the Persian Gulf states. The arrow leading from decision

2 to event 6 meant that the probability that the Arabs and Israel would

reach an acceptable political settlement depended on whether or not the

United States continued its strong diplomatic support of Israel.

To estimate the likelihood of any uncertain event shown

in Figure 5.35, it was necessary to know the status of all of the events

and decisions that had arrows leading into the circle repre~enting the

event. For example, Figure 5.35 shows that uiitial U.S. and Soviet pol-

icy decision with respect to the Persian Gulf (decisions 2 and 3, and

events 4 and 5) influenced subsequent events indirectly through their

impact on the likelihood that there would be a significant increase ir

tthe level of revolutionary organization and activity in the area (event 7).

Defining the dependencies of the events and decisions in

the Persian Gulf model, as shown in Figure 5.35, drastically reduced the

number of probability assessments required of experts. In this case, the

number of probability assessments was reduced from several million to ap-

proximately 100. Although experts disagreed over some of the influence

linkages shown In Figure 5.35, none of the proposed changes would have

resulted in a significantly different number of probability assessments.

More importantly, the influence diagram in F:Lgure 5.35 gave the experts

a language with which to communicate their differences of opinion over

the relationships between U.S. policy decisions and events that might have

economic implications for the United States,
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In addition to reducing the number of probability assess-

ments required for the model, careful definitions of the dependencies be-

tween uncertain events greatly reduced the number of calculations required

to manipulate the model. The influence diagram in Figure 5.35 pinpoints

those portions of the decision tree in which redundant probability calcu-

lations occured. By eliminating the redundancies, it was possible to

reduce both the size of the decision tree and the number of calculations

required to analyze the tree. When this was dorue, the model could be re-

duced from a decision tree with millions of decision and event nodes to

a highly integrated decision tree with less than a thousand nodes.
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Appendix A

PROBABILISTIC DEPENDENCE

To simplify the tasks of assessing and processing uncertain infor-

mation it is often necessary to assume that random variables are inde-

pendent. With this assumption, it Is po'-sible to assess the prohability

distribution for each random variable separately, and deal with relatively

simple marginal probability distributions rather than complicated condi-

tional distributions. Most large decision analysis projects contain

within them some implicit or explicit assumptions about the independence

of various random variables.

In order to describe independencies, we need to have a clear under-

standing of the types of independence that are possible. Two random var-

iables are either dependent or independent. However, as we shall see,

there are twenty-two different combinations of dependence and independence

that can exist among three random variables. When there are more than

three random variables, there are many different combinations of depen-

dence and independence that exist among them.

This section describes the twenty-two combinations of dependence and

independence that can exist among three random variables and gives an ex-

ample of each combination. This topic has been discussed by Tribus [15).

However, Tribus considers only twelve of the twenty-two possible combin-

ations of dependence and Independence that can exist among three random

variab les.

1. Independence Equation for Two Random Variables

When we assert that two random variables are independent, we are

assuming that their joint probability distribution is equal to the prod-

uct of the two marginal probability distributions. In other words, if

ct, 45 t3'5



S. .(

we say that random variables A and B are independent, then we are

claiming that the following equation is true.

(AB) - (A) (B}

Alternatively if we say that A and B are dependent, then we are claim-

ing that the equation above is %ot true. To avoid writing an equation

for each independence assetki Li, we will denote the assumption of indepen-

dence between random variablcs A and B as follows: I(A,B). If A

and B are dependent, then we write I(A,B). If there are only two random

variables, we must have I(A,B) or I(A,B).

2. Independence Equations for Three Random Variables

If we have three random variables-- A , B , and C -- then there

are ten possible independence equations. For example, we can assume that

the three random variables are mutually independent, which means that

their joint probability distribution is equal to the product of the three

marginal distributions. Mutual independence is equivalent to the fol-

lowing equation.

(ABC) * (A) (B) (C)

If the three random variables are not mutually independent, then this

equation is not true. In our notation mutual independence is written

I(A,B,C). If the three random variables are not mutually -ndependent,

we write T(A,B,C). The lack of mutual independence does not mean that

the three random variables are mutually dependent, since other types

of Independence are possible. Mutual dependence means that there are

no independencies among any of the random variables.

Another type of independence that can be asserted among the three

random variables is that two of the three random variables are indepen-

dent without regard to the third. When we have three random variables--

A , B , and C -- we can assert I(AB) or equivalently
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(AB) - (A) (B)

This means that A and B are independent as long as we do not know C.

Obviously, we can make similar independence assertions for A and C

or B and C.

Another type of independence assertion is that one of the random

variables is independent of the distribution for the other two. If we

assume that A is independent of B and C . then

(ABC) ( {A) (BC)

In our notation, this independence equation is denoted I(A,BC). This

equation means that learning the value of A will not change the Joint

probability distribution for B and C . Alternatively, it means that

learning B and C will not change the probability distribution for A.

We could also assert that B is independent of A and C , or that C

is independent of A and B.

When we learn the value of one of the three random variables, it

changes our state of information and therefore can change our assumptions

about independence for the remaining random variables. This allows us

to make a different kind of independence assertion. For example, we can

assume that when we know C , A and B are independent. The equation

tion for this independence assertion is

(ABIC) - (AIC) (BIC)

When (C) # 0 , the following equation is equivalent to the one above.

(ABC) - (AC) (BC)
(C)

*This is not a restrictive condition since (ABIC), (AIC), and (BIC) are
not defined when (C) = 0.
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This independence assumption is denoted I(A,BIC). As before we can find

some other independence assumptions by permuting the random variables.

Thus, we can assume that B and C are independent when we know A , or

we can assume that A and C are independent when we know B.

In this discussion it is assumed that independence can only be as-

serted among quantities that are each based on the same state of information.

Independence among quantities that are based on different states of infor-

mation is difficult to define since the different states of information

may themselves affect the validity of the independence assumption. For

example, can we assert independence between A by itself, and B given

C? The independence equation corresponding to this statement is not well

defined. We are trying to assert independence between (A) and (BIC), and

by analogy with the other independence equations we should be able to

equate the product of these two quantities to some other quantity. How-

ever, it is not clear whether the product should equal {AB}, {ABIC}, or

something else.

In summary, there are ten possible independence equations or asser-

tions that can be made for three random variables. These independence

equations are listed below.

(1) I(A,B,C) : {ABC) (A> (B) (C)

(2) I(A,B) (AB) - (A> (B)
(3) I(A,C) : {AC) = (A) (C)

(4) I(B,C) : {BC} ( (B) (r,

(5) I(A,BC) : (ABC) ( {A) (BC)
(6) I(B,AC) : (ABC) - (B) (AC)

(7) I(C,AB) : (ABC) a <C} (AB}I (8) I(A,BIC) : (ABIC) - (AIC) (BIC)

(9) I(A,CIB) : (ACIB) - (AIB) (CIB)

(10) I(B,CIA) : (BCIA) = (BIA) (CIA>

3. Relationships Among Independence Equations

Since each of these independence equations can be either true or not
10true there would be 2 c. 1,024 possible combinations of dependence and

................- '-.-- :-
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independence among three random variables if it were not for the fact that

some of the independence equations imply others. We can use the relation-

ships among the ten independence equations to eliminate most of the 1,024

possible combJn-tions, leaving twenty-two possible combinations of inde-

pendence assert.ons that can exist among three random variables.

The first relationship among the independence equations is that mu-

tual independence implies all of the other types of independence.

I(A,B,C) - I(A,B), I(A,C), I(B,C), I(A,BC), I(B,AC),
I(C,AB), I(A,BIC), I(A,CIB), I(B,CIA)

To prove this relationship we start with the equation for mutual indepen-

dence: (ABC) - {A) (B) (C) If we integrate both sides of this equation

over all possible values of C , we have (AB) - {A} (B). This proves

that A and B are independent without regard to C , or I(A,B). Sim-

ilarly, by integrating over all possible values of B and A , we find

that (AC) - (A) (C) and (BC) - (B) (C) . These two equations are

equivalent to I(A,C) and I(B,C). If we substitute these equations into

the equation for mutual independence, we have

(ABC) - (A) (BC) - (B) (AC) - (C) (AB) , or I(A,BC), I(B,AC), and

I(C,AB). By using these results we show that

(ABIC) (ABC) (A) (B_) (C)
(C)IC - (A) (B)(C) (C)

- (AIC) (BIC) when (C) 0 0

This is equivalent to I(A,BIC). In exactly the same way we can prove

I(A,CIB) and I(B,CIA) when B 0 0 and A 0 0. Thus, mutual

independence Implies all other types of independence.

*This is not a restrictive condition since (ABIC), (AIC), and (BIC) are

not defined when (C) -0.
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The other relationships among the Independence equations are

listed below. The proofs for these relationships are similar to the one

for mutual independence, and they are outlined briefly.

1. I(A,B,C) - l(A,B), I(A,C), I(B,C), 12(A,BC), l(B,AC),
I(C,AB), I(A,BIC), 1(A,CIB), I(B,CIA)

2. I(A,BC) -I(A,B), I(A,C)
Proof: I(A,BC) - (ABC) a(A) (BC) - (ABC) -(A) (BC)

C C
-(AB) -(A) (B) -I(A,B)

3. I(A,BC) - (A,BIC), I(A,CIB)
Proof: I(A,BC) -I(A,B), I(A,C)

-(AB) (A) (B), (AC) - (A) (C)
(A) ( AB-) - (AC)-

I(A,BC) - (ABC) - (A) (BC) (AB) (BC) (AC) (BC) ~
(B) (C)

4. I(A,BC), I(B,C) - I(A,B,C)
Proof: I(B,C) -(BC) - (B) (C)

I(A,BC) -(ABC) - (A) (BC) -(A) (B) (C)
-I(A,B,C)

5. I(A,BC), l(B,AC) - I(A,B,C)
Proof: I(B,AC) - I(B,C)

I(A,BC), t(B,C) - I(A,B,C)

6. L(A,BC), I(B,CIA) - (A,B,C)
Proof: I(A,BC) - (A,B), I(A,C)

-(AR) -(A) (B), (AC) -(A) (C)
l(BIA) (AB) -(AB) (AC) . (A) (B) (C)

I(AB,CI)- AC C

7. I(B,CIA), I(A,B) -I(B,AC)

Proof: I(A,B) -(AB) - (A) (B)

I(BCIA) - (ABC) - (AB) (AC)- (B) (AC)
- (B,AC)(A

4. Cobnations-ofIndependexe Equations

The twenty-two possible combinations of independence equations are

shown graphically in Figure A.I. The remaining 1,002 combinations of
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independence equations are not possible since they violate one of the

relationships above. The twenty-two combinations of independence equa-

tions have been labeled with numbers in square brackets at the right of

A.1. The first combination corresponds to mutual independence and the
twenty-second combination corresponds to mutual dependence. The other

twenty combinations correspond to various intermediate levels of indepen-

dence among three random variables.

The combinations of independence equations are demonstrated below

with simple examples based on flipping four types of coins: fair, biased,

thick and magnetized coins. The random variables in each example describe

whether a head or tail results from flipping the coins. These random

variables are discrete, but it is easy to generalize the examples to in-

clude continuous random variables. Examples are provided for only 10

of the 22 possible combinations of independence equations, but any com-

binatlon can be demonstrated by permuting the random variables in these

examples.

Example (1): Combination (1] in Figure A.1

I(A,B,C), I(A,BC), I(B,AC), I(C,AB), I(A,BIC),

I(A,CIB), I(B,CIA), t(A,B), I(A,C), I(B,C)

In this example A , B , C correspond to the outcomes of flipping three

fair coins. The joint probability mass function for A , B , and C is:

B B

H T H T 1
A H 0.125 0.125 0.125 0.125 H A

T 0.125 0.125 0.125 0.125 T
C 1iH C =T

Exampe (21: Combination [2] in Figure A.1

Y(A,B,C), I(A,BC), "(BAC), Y(C,AB), I(ABIC),
I(ACIP), I(B,CIA), I(A,B), I(Ao), Y(B,C)
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In this example A corresponds to the outcome of flipping a fair coin,

and B and C correspond to the outcomes of flipping two magnetic coins.

The probability that a head will occur when the first magnetic coin Is

tossed is 50%. However, there is a 60% chance that the second magnetic

coin will land with the same side up as the first magnetic coin. Neither
of the magnetic coins are affected by the outcome of tossing the fair c in.

The conditional probabilities for this example are:

{AHl) - {B-H} - 0.5

{C-HIB-H} - {C-TIB=T} - 0.6

The joint probability mass function for the three random variables is:

C C

T T H T

B H 0.15 0.10 0.15 0.10 H 8

T 0.10 0.15 0.10 0.15 T

A H A -T

Example (3): Combination LS] in Figure A.1

I(A,B,C), I(A,BC), I(B,AC), I(C,AB), I(A,BIC),

I(A,CIB), I(B,CIA), I(A,B), I(A,C), I(B,C)

In this example A , B , and C each correspond to !he same flip of a

fair coin. The conditional probabilities for this example are:

{A-H) - 0.5

{B-HIA-H) - (B-TIA-T) - 1.0

(C-HIA-H} - {C-TIA-T} - 1.0

The joint probability mass function for the three random variables
St ~is: ,
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B B

H T H T

A H 0.5 0 0 0 H A

T 0 0 0 0.5 T

C-H C T

Example (4): Combination (6J in Figure A.1

I(A,B,C), I(A,BC), I(B,AC), I(c,AB), I(A,BIC),

I(A,CIB), I(B, C IA) , I(A,B) , f(A,C), I(B,C)

In this example A corresponds to the outcome of flipping a fair coin.

If A is a head, then B and C must also be heads. If A is a tall,

then B and C both correspond to the same flip of another fair coin.

The conditional probabilities for this example are:

<A-H) -0.5

(B-llIA-H) - 1.0, (B-T IA-T) - 0.5

{C-HIB-H) - {C-TIB-T} - 1.0

The joint probability mass function for the three random variables is:

C C

H T H T

B H 0.5 0 0.25 0 H B

T 0 0 0 0.25 T

A-H A T

Example (5),: Combination [8] in Figure A.1

I(A,B,C), I(A,BC), I(B,AC), I(C,AB), I(A,BIC),

I(A,CIB), Y(B,CIA), I(A,B), I(A,C), I(B,C)

In this example C corresponds to the outcome of flipping a thick coin

(a cylinder) that can land on its edge in addition to heads or tails.

Possible outcomes for C are heads (H), tails (T), and edge (E). A and
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B correspond to the outcome of flipping two biased coins, where the bias

of each coin depends on the outcome of C . The conditional probabilities

for this example are:

{A-HIC-H} - 0.4, (B-HIC-H) - 0.6

f<(A-HIC-T} - 0.5, (B<-HICT} - 0.1

(A-HIC-E} - 0.7, (B-H C-E) - 0.6

(C-H) - (C=T) - 0.4, (C=E) - 0,2

The joint probability mass function for the three random variables
is:

B B B

H T H T H T

A H 0.096 0.064 0.020 0.180 0.084 0.056 H A

T 0.144 0.096 0.020 0.180 0.036 0.024 T

C H C T C E

It can be shown that this combination of independence assertions cannot

exist for three binary events. Thus it wa5 necessary for C to have

three possible outcomes in the example above.

Exampl (6): Combination (9] in Figure A.].

I(A,BC), I(A,BC), T(B,AC), I(C,AB), I(A,BIC),

I(A,CIB), I(B,CIA), I(A,B), I(A,C), I(B,C)

In this exnmple C corresponds to the outcome of flipping a fair coin.

A and B correspond to the outcomes of flipping two biased coins, where

the direction in which the coins are biased depends on C. The condi-

tional probabilities for this example are:

{A-H=C-H) - (B-HICH)> - 0.6

(A-HIC-T} - (B-H IC-T) - 0.4

(C-H> 0.5
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The joint probability mass function for the three random variables is
B B

H T H T

A H 0.18 0.12 0.08 0.12 H A

T 0.12 0.08 0.12 0.18 T

C-H C-I

Example -(7): Combination (15) in Figure A.1

Y(A,B,C), I(A,BC), I(B,AC), I(C,AB), Y(A,BIC),

I(A,CIB), I(B,CIA), I(A,B), I(A,C), I(B,C)

In this example C corresponds to the outcome of flipping a fair coin.

Aand B correspond to the outcomes of flipping two magnetized coins,

where the direction in which B is magnetied depends on C. The condi-

tional probabilities for this example are:

(C-H) - (B-H) - 0.05

{A-HJB-H,C-H) - {A-TIB-T,C-H} - 0.6

{A-HIBaH,C-T} - (A-I IB.'T,C-T} - 0.4

The Joint probability mass function for the three random variables is:

B B

H T H T

A H 0.15 0.10 0.10 0.15 H A

T' 0.10 0.15 0.15 0.10 T
C-H C T

Example (8): Combination (16] in Figure A.1

I(A,B,C), Y(A,EC), I(B,AC), I(C,AB), 1f(A,IBIC)s

ICA,CIB), I(B,CIA), I(A,B), I(A,C), 1(B,C)

JIn this example A corresponds to the outcome of flipping a fair coin.

B and C correspond to the outcomes of flipping two magnetized coins,

-. .~1'-



where the outcome of A is used to determine how strongly the coins are

magnetized. The conditional probabilities for this examnple are:

{A-H} - (B-H) - 0.5

(C-HIBuH,A-H) - (C-T IB-T,A-H} - 0.8

{C-HIB-H,A-T) - {C-TIB-T,A'-T) - 0.6

I The joint probability mass function for the three random variables

is:

C C

PH T H T

T 0.05 0.20 0.10 0.1502 0T501 01

A-H A-T

Example (9): Combination [18) in Figure A.1

T(A,B,c), I(A,BC), I(B,AC), T(C,AB), T(A,BIc),

I(A,CIB), I(B,CIA), I(A,B), I(A,C), I(B,C)

In this example A and B correspond to outcomes of flipping two fair

coins. C corresponds to the outcome of flipping a biased coin where

the amount that the coin is biased depends on A and B. The condi-

tional probabilites for this example are:

{A-H} (B-H) - 0.5

{C-HIA-H,B-T) - 0.4

{C-HIA-H,B-T) - (C-H jA-TB-H} a 0.6

(C-H IA-H,B-H) - 0.8

The joint probability mass function for the three random variables is:

B BIH T H T
A H 0).20 0.15 0.05 0.10 H A

T 0.15 0.10 0.10 0.15 T

C-H C T
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Example (10): Combination [221 in Figure A.1

I(A,B,C), I(A,BC), I(B,AC), I(C,AB), I(A,BIC),

I(A,CIB), I(B,CIA), I(A,B), I(A,C), I(B,C)

In this example A , B , and C , correspond to the outcome of flipping

three magnetic coins. There is a 50% chance that the first coin flipped

will come up heads, and there is a 60% chance that the second coin flipped

will land with the same side up as the first. If the first two coins are

both heads or both tails, there is an 80% chance that the third coin flipped

will have the same outcome; otherwise the probability of heads on the third

flip is 50%. The conditional probabilities for this example are:

(A-H) a 0.5

{B-HIA-11) - B-TIA-T) - 0.6

(C-HIA-H,B-H} - (C-TIA-T,B-T) - 0.8

(C-HIA-H,B-T> - (C-HIA-T,B-H) - 0.5
"The joint probability mass function for the three random variables is:

B B

H T H T

A H 0.24 0.10 0.06 0.10 H A

T 0.10 0.06 0.10 0.24 T

C=H C T

E. An Additional Relationship Among the Independence Equations

Some of the comb tnations of independence equations require the Joint

distribution for the three random variables to contain several zeros.

This means that certain combinations of outcomes for the three random var-

iables are net possible even though each of the random variables can in-

dividually assume the same outcomes. In Example (3), A , B , and C

can each be heads or tails, but it is not possible for one to be a head

when another is a tail.
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If we assume that the joint distribution cannot equal zero when the

individual marginal distributions are not zero, it is possible to prove

an additional relationship among the ten independence equations.

I(A,BIC), I(A,CIB) - I(A,BC) if (BC) # 0

The assumption the (BC) is not zero allows us to divide by this quantity

in the following proof:

I(A,BIC), I(A,CIB) - (ABC) {C) = (B)

- (AC) (B) - {AB) (C) - (AC) (B) - (AB) (C)
C C

- (A) (B) ( (AB) - I(A,B)
I(A,CIB), I(A,B) - I(A,BC)

If this relationship is added to the seven discussed above, it can

be used to eliminate four of the twenty..two possible combinations of

independence equations. The four combinations that are eliminated are

numbered (5], [6], [7], and [10] in Figure A.i. The remaining eighteen

combinations of independence equations are still possible.

F. Encoding the Twenty-Two Combinations of Independence Equatons

A subjects' state of information about several uncertain quantities

can be represented by a wide variety of possible combinations of indepen-

dence equations, even when the problem contains as few as three random

variables. One of the principal motivations for assuming that random

variables are independent Is to limit the amount of probability encoding

required to specify the Joint probability distribution for all random

variables. Although there are many nossible combinations of independence

equations, the degree of difficulty associated with assessing the uncer-

tainties necessary to specify the joint distribution can be determined by

some very simple properties of the independence equations that are assumed

to be true. We can place the ten possible independence equations for three

random variables in the four cate',ories as shown below:
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Category 1: I(A,B,C) : (ABC) - (A) (B) (C)

Category 2: I(A,BC) : (ABC) - (A) (BC)
I•(B,AC) : {ABC) - (B) JAC)
I(C,AB) : (ABC) a (C) (AB)

Category 3: I(A,BIC) t (ABIC> - (AIC) (BIC)
I(A,CIB) % (ACIB) - (AIB) (CIB)
I(B,CIA) : (BCIA) - (BIA) (CIA)

Category 4: I(A,B) : (AB) - {A) (B)
I(A,C) : (AC) - (A) (C)
I(B,C) : (BC) a (B) (C)

The degree of difficulty associated with assessing the probabilities

needed to specify the joint distribution for A , B , and C depends

only on which categoriee of independence assumptions contain equations

that are assumed to be true. As a measure of the degree of difficulty
associated with the assessment problem, we will assume that A , B , and

C are each discrete random variables with probability mass functions that

contain n possible (utcomes; we will then determinc the minimum number

of probabilites required to specify the joint mass function.

If the three random variables are assumed to be mutually independent

(Category 1), then the joint distribution can be determined by assessing

the three marginal distributions and multiplying them together. To spec-

ify each of the marginal probability mass functions, we would need to

assess n probabilities. Therefore, to determine the joint probability

mass function for A , B , and C , we would need to assess 3n prcb-

abilities.

If our state of information about the three-random variables is such
that we can not assume mutual independence, but can assume that one of the
independence equations in Category 2 Is true, we can determine the joint

i . probability density function by assessing one of the marginal distribu-

tions and the joint distribution for the two remaining random variables.

We need to assess n probabilities to determine the marginal distribu-

tion, and n2 probabilities to determine the joint distribution for two

random variables. Thus, when we can assume that one of the independence
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equations in Category 2 is true, but that the independence equation in

Category I is not true, we would need to assess (n2 + n) probabilities

This situation occurs for the combinations of independence equations num-I bered [2], (3], and [4] in Figure A.1.

If our state of information about the three random variables is such
Sthat we cannot assume that the independence equations in Categories 1

and 2 are true, but one of the independence equations in Category 3 is

true, we can determine the joint probability density function by assessing

the marginal distribution for one of the three random variables and the

conditional distributions for the other two random variables, given the

first. In this situation, we would need to assess n probabilities forI 2
the marginal distribution, and n probabilities for each of the two

conditional distributions. Thus, when the independence equations in Cat-

egories I and 2 are not true, but one of the independence equations in
(2n

Category 3 is true, we will need to assess (2n + n) probabilities.

This situation occurs for the combinations of independence equations num-

bered (5] through [14] in Figure A.1.

If our state of information about the three random variables is

such that none of the independence equations in Categories 1, 2, and 3

are true, but one of the independence equations in Category 4 is true,

then we can determine the Joint density function by assessing two mar-

ginal distributions and the conditional distribution for the third ran-

dom variable, given the first two. However, to assess the conditional
3

distribution, we would need to assess n probabilites. Since we can
3

assess the joint distribution for all three random variables with n3

probabilites, we can minimize the number of probabilities assessed by

doing so. We could also assess the joint distribution for all throeI 3
random variables by assessing the n probabilities in the case where

none of the independent equations are true. Thus, when none of the inde-

pendence equations in Categories 1, 2, and 3 are true, we will need to3
assess at least n probabilities.

The number of probabilities that must be assessed to determine the

joint distribution for all three random variables is summarized in the

following table as a function of the categories of independence equations.
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Categories of Number uf
Independence Probabi itties
Equations Assessed

1 3n

2 n2+n
2

3 2n + n
3

4 n

The number of probabilities that must be assessed to determine the

joint distribution is a rough measure of the degree of difficulty asso-

ciated with the encoding process. For a three-variable problem where

each variabl-, has many possible values--corresponding to large values of

n--mutual indepezuter-e (Category 1) or partial independence (Categories

2 and 3) can be powerful simplifying assumptions. Where more than three

variables are involved the independence assumptions are ever more useful.

The number of prcbabilities that must be assessed to determine the

joint distribution is a rough measur• of the degree of difficulty asso-

ciated with the encoding process. For a three-variable problem where each

variable has many possible values--corresponding to large values of n--

mutual independence (Category 1) or partial independence (Categories 2

and 3) can be powerful ,:.mplifying assumptions. Where more than three

variables are avolved the independence assumptions are even more useful.

Vt
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Appendix B

APPROXIMATE METHODS OF CALCULATING THE VALUE OF INFORMATION

The purpose of this section is to explain how approximate methods

can be used to determine the value of information. The approximate value-

of-information calculations are based on deterministic sensitivities,

and decisions to increase or decrease the size of a model can be based

on the approximate values of information.

1. Introduction

Decision problems may be grouped according to the the number of

stages they contain. We define a half-stage problem as one without deci-

sion variables. A single-stage problem has any number of decision vari-

ables followed by any number of state variables. Multistage problems

are characterized by decision variables separated by state variables.

Figure B.1 classified typical problems. Any decision problem can be

certain "smoothness" properties can be exploited to find answers as accu-

rate as those from trees at a fraction of the computational cost. For 4

one-half or one-stage problems specific procedures can be programmed that

Lare adequate for the majority of problems. Two-stage procedures exist

for a class of problems. Practical procedures do not exist for many-

stage problems

For simplicity we will treat the case of risk indifference. However,

Rice [141 has shown that only minor modifications are required to extend

the framework to include risk aversion.
IIA value function and a deterministic model, can be expanded it a i

Taylor series about the mean of the state variables and the corresponding

optimum setting of the decision variables. This approach is exact for a

,..-'i.,.ý Ts e-stage problem that is quadratic in continuous state and decision
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variables and for discrete decision problems where the value function is

I a linear function af the state variables.

Howard has developed and documented this approach for change of var-

iable problems in his course notes for EES 221 (7] at Stanford University,

and for one-stage problems in his paper Proximal Decision Analysis (6].

His results are algebraic expressions for the mean and variance of the

profit lottery and for the value of clairvoyance on the state variables.

Means, variances, and covariances for the state variables, as well as

the partial dereivations it 1rofit with respect to the state and

decision variables are re' , puts. To automate Howard s methodology,

a computer would be givet, th, or protit function and the moments

of the state variables. The - omputer would automatically run sensi-

tivities to estimate the reqy ied partial derivatives.

Rice has generalized Howard's approach. The general approach also

starts with sensitivities and ends with the value of clairvoyance on each

state variable. However, the middle step is eliminated, going directly

from sensitivities to value of clairvoyance without evaluating partial

derivatives. For continuous problems, ones with continuous state and

decision variables, the two methods are equivalent. The ad'vantage of

the direct method is that is also works for problems with discrete deci-

sion and/or state variables and with discontinuous value functions.

2. ,Computerizing the Sinple-Stage Model

For a computer to find the value of clairvoyance for a state variable

given only a single-stage profit function and the moments (or distribu-

tions) of the state variables, two conditions must hold:

(i) The state variables must be probabilistically independent

of decision variables.

(ii) The value structure must be of the form v(s,d): a deter-

ministic model which assigns a single profit measure to

each complete vector of state and decision variables.

Neither condition is restrictive, The Entrepreneur's Problem in Proximal

Decision Analysis [6) demonstrates how apparent violations of (i) can be
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rectified by reformulating the deterministic model. The model form

v(s,d) in (ii) is common to many discrete as well as continuous problems.

The output for the computer program is the approximate value of in-
formation. The expected value of clairvoyance on the i'th state variable

is the prior expectation of the conditional expected value given sa less

the prior expected value:

<vo IE> <<vjsi,E>> - <vIE>

Alternatively, we can focus on changes of decision by subtracting the

prior expected value from the conditional expected value before taking

the second expectation:

<V IE>= <<vlsi,E> - <vIE>IE>
ci

The value of clairvoyance is the expected increase in value from making

declsions after si is revealed rather than before. We define the ,

q4n.itity:
.4

<vis ,E>- <vIE>

as the stochastic compensation: "stochastic" because each term is an ex-

pected value, and "compensation" because the decision is reoptimized to

compensate for the departure of the i'th state variable from its mean.

Using the new termintlogy, the value of clairvoyance on the i'th state

variable is the expected stochastic compensation.

To approximate the value of clairvoyance, deterministic compensation

may be substituted for stochastic compensation.

3. Steps to Compute the Approximatq Value of Information

To calculate the approximate value of information for the single

stage problem, a computer must complete the following step.s:
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1) Accept the problem specification.

2) Solve for the deterministic optimum decision.

3) Perform deterministic open loop sensitivities.
4) Perform deterministic closed loop sensitivities.

5) Generate compensation functions.

S6) Compute the expected compenbation.

The procedure is remarkably robust. It works regardless of whether

the state and decision variables are continuous or discrete. However,

because of difference in optimization techniques the algorithms to achieve

step 1-6 are different for discrete and continuous decision variables.

4. Discrete Decision Variable

For a discrete decision variable steps 2-4 can be performed simul-

taneously. As illustrated in Figure B.2 for two decision alternatives,

the value v must be computed for each alternative at s , and at

s + s . Then the open-loop sensitivity is the curve with the highest

value at s , the one for d1  in the extmple. The closed loop sensitiv-

ity is the upper boundary of the curves. In Figure B.2 it is the dI

open-loop sensitivity to the right of the crossover point and the d

open-loop sensitivity to the left of the crossover point. The compensa-

sation is the difference between the closed and open loop sensitivities,

plotted in Figure B.3 for the example. The expected value of clairvoyance

is found by numerically integrating the product of the compensation plot

and the distribution of the state variable.

!. The extension of the procedure to many discrete alternatives is

straightforward. There is one open-loop sensitivity for each alter-

native. The closed loop sensitivity is the concave envelope of the

open-loop sensitivities. The compensation is the difference between

the closed-loop and open-loop sensitivities as before.

5. Continuous Decision Variables
For continuous deaision variables or for discrete decision vari-

ables with many alternativeet the computer will generate conventional
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FIGURE 6.3 COMPENSATION FOR A DISCRETE DECISION VARIABLE

senstiviies.Starting with the base case where all state variables

ministic topthirum the andpuall successively a~dd and sutacts anhincre

mernt to the l'th state variable. As illu~trated in Figure B.4a, the

decision is reoptimized at each point for the closed loop sensitivity
and eldat the deterministic optimum for the open loop sensitivity.

The compensation plotted in Figure B.4b is the difference between the

I ~open-loopeanid closed-loop sensitivities. To compute the expected compen-
sation tecomputer will approximate tecompensation with a quadratic

or other curve forti1 and perform numerical integration.
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FIGURE BA4 COMPUTATION FOR CONTINUOUS DECISION VARIABLES

F. Two Stage Problems

Merkhofer [10] has shown that under certain conditions the two-stage

continuous decision problem illustrated in Figure B.5 is solvable by these

methods. As discussed in The Economics of Decision Makin& (14], the only

important terms in the value function are the G matrix of second partial

derivatives of valilk v'Lth respect to the i'th state variable and the J'th

decision variable and the H matrix of second partial derivatives of value

with respect to decision variable i and decision variable J. These

matrices may be positioned an shown in Figure B.5. The value of compensa-

tion for this model is defined to be the difference between the open-loop
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sensitivity of the value function to the state variables a and the partially

closed loop sensitivity in which the decision variables d are held at

their deterministic optimums but the decision variables dare continu-
-2

ously optimized as ais varied. The expected deterministic compensation

is calculated to be:

<V IE> - -(1/2) <a G 1 H_ G12s E>

The expected value of the optimal decision strategy will equal the ex-

pected deterministic compensation under either of the following condi-

1. 82 is probabilistically independent of sle

2. G 22 is a zero miatrix and <s2j,.~e

(Non-observable state variables are deterministically independent

of the flexible decision variables and the prior expectation is

that the posterior mean of swill not be shifted by knowledge

of aS.
-1

These conditions are frequently statisfied in practice.
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Appendix C

THE VALUE OF DECISION-DEPENDENT INFORMATION

The idea of valuing perfect information has appeared in many treat-

ments of decision making under uncertainty. Most often the example being

treated represents a simple hypothetical situation. The informational

structure that is being captured in probability assignments is straight-t forward and the assumptions re~arding the probabilistic structure, such

as types of independence among both controlled and uncontrolled variables,

are implicit in the problem statement. However, the correct computation
of the value of information can be elusive on both conceptual and numer-

ical bases. The concept of clairvoyance will lead us to the construction

of detailed information models and to the exploration of their precise

interpretation and use.

1. The Primary Decision

For illustration, let us play the role of analysts for a space mis-

sion designed to land a remotely controlled experimental apparatus on

the surface of Mars. We have thoroughly analyzed the mission and have

summarized our total state of information by assigning a 0.6 probability

that the Mars mission will be successful and a corresponding 0.4 prob-

ability that it will be a failure. Also we have analyzed the values to

be derived from the mission and have put them in monetary units--millions-

of-dollars, for example. Let's assume that the value of a successful Mars

mission is 50 units and the value of an ursuccessful one is 10 units. A

positive value might be attributed to a failure because attempting the

mission has important social value and even a failure will provide know-

ledge for a better design on the ne.xt attempt.

Unexpectedly, several months before launch another nation announces

that it will attempt a similar mission to Venus in about one year. Because A
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of the competitive nature of the space race and the important foreign

policy implications of technological leadership, we realize that the value

of changing our destination and successfully landing on Venus would be

quite high. On the other hand, if we attempt to land on Venus and fail

we would look foolish for diverting the program, and in any case we would

set back the timetable for our extensive Martian exploration program at

least two years. When all of these factort, are evaluated we fini that a

successful landing on Venus is worth 100 units and a failure costs 10

units. To our surprise, when we check the feasibility of diverting the

mission we find that because of modular design only a few important, but

thoroughly tested, components of the landing system need to be changed,

and the mission engineers assign a 0.6 probability of success regardless

of destination.

From these assessments, we can lay out the primary decision tree of

Figure C.l. Along each outcome branch emanating from a chance node we

have written the conditional probability of following that path, and near

each node we have written the value, either assigned or derived, of being

at the point in the program represented by that node. We see that the

expected value of going to Mars is 34, while the expected value of going

to Venus is 56. Thus, in order to maximize the expected value of the

mission we decide to go to Venus.

2. Value of Perfect Information

We might wish to use the decision tree to investigate the possi-

bility of gathering new information before we make the final decision.
To do this we can use the value of nerfect information as an upper bound
for the value of less complete information gathering programs. Most ana-

lysts, when presented with Figure C.1 aad asked to derive the value of

perfect information, reverse the order of decision and chance nodes in
. IFigure C.1 to produce the tree shown in Figure C.2. With the latter tree

we learn first whether the mission will succeed or fail, and then we de-

cide on the destination. If we know the mission will succeed, we send

it to Venus for 100 units of value, and if it will Zail, we send it to Mars

for 10 units of value. Using the original probability of success (0.6)
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DESTINATION MISSION VALUE

S0.6 ,---. so

i 0,4

580

100

FIGURE C.1 THE PRIMARY DECISION TREE

as the probability that the information will predict a success, we obtain

an expected value of 64 units with perfect information. Subtracting 56

units for the value of the primary decision problem, we obtain 8 units

for the value of perfect information.

What mighc be wrong with this approach? Suppose that perfect. infor-

mation revealed that the mission would succeed on Mars but fail on Venu6,

or vice-versa. These possibilities do not appear in Figure C.2. To cor-

rect this omission we might draw a new tree for the value with perfect

information as illustrated in Figure C.3. First we learn one of four

possible predictions consisting of the four combinations of success or

failure on Mars and Venus. Then we make the best decisions given this

information, as indicated in the decision tree.

In order to assign probabilites one might reason that, since landings

on Mars or Venus appear in separate portions of the primary tree of

Figure C.1, the events must be independent and the probabilities should

be multiplied as shown in Figure C.3. This will yield a value of 73.6
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DETERMINING THE VALUE OF
PERFECT INFORMATION

with perfect information, and subtacting the 56 unit value of the primary

decision it yields a 17.6 value of perfect information.

However, the independence assumption must be questioned. Since w.

can only send the mission to a single destination, might the events be

mutually exclusive? If we simply try to assi.gn the probabilities directly

we are tempted to phrase confusing questions like "What is the proba-

bility we will succeed on both Mars and Venus?" or "If we learned we had

failed on Mars what probability would we assign to success on Venus?"

The trouble stems from the fact that we have only one rocket atid it is

difficult to consider sending it to both destinations simultaneously,

but this consideration seeems to be necessary in order to assign the

lee
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required probabilities. Perhaps we could rezrer to a "classical" inter-

* pretation in which we construct twany "Identical" hypothetical worlds where

some rockets are sent to Mars and others are sent to Venus. With much

thought and carefu; phrasing we might arrive at clear que.stions with use-

.fu interpretations, but we might still wonder if we had come up with a

valid assessment.

3. The Concept of Clairvoyance

These confusing questions of prooability assessment can be resolved

with the Introduction of the clairvoyant, a hypothetical character who

knows all and who can answer any well-specified question about any uncer-

tainty. Of course, we shall never really be able to obtain answers from

him, but our probability assignments for his possible answers will provide

hle key to probabilistic structuring.

In thl- ). am•Ž.. ,. harnd, if we were to ask the clairvoyant whether

the mission will succeed or fail, he might respond by saying that the re-

suit could depend on where you sent it. Thus, we should be led to asking

him two such questions, one for each destination. To make our questions

precise we might draw up the questionnaire of Figure C.4. Presuming that

DESTINATION MIGSION

FAILURE SUCCESS

MARSLiL.

VENUS I D

NOTE: Check one box in each row.

FIGURE C,4 CLAIRVOYANT'S REPORT FORM
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the clairvoyant is satisfied with our definitions of success and failure,

he could answer by checking one box in each row corresponding to the out-

come he foretells for each destination choice.

Before we engage the clairvoyant, we wish to calculate the value

of his sevice In monetary units: the value of clairvoyance. Since the

clairvoyant has two possible answers for each of the two questions, there

are four possible reports for Mars and Venus: failure, failure; failure,
success; success, failure; success, success. We now must assign prob-
abilities to these reports. A possible probability assignment, compat-

ible with our original assignments of Figure C.1, is lilustrated in

Figure C.5. This distribution Implies dependence between our knowledge

r VENUS
MARS

FAILURE SUCCESS

FAILURE 0.354 0.046 0.4

SUCCESS 0,046 0.554 0.5

I I 0.4 0.6

FIGURE C.6 JOINT DISTRIBUTION FOR CLAIRVOYANT'S
ANSWERS

of the clairvoyant's two answers. For example, if he were to answer suc-

cess on Mars, we would then assign a 0.554/0.6 - 0.923 probability that

he would also answer success on Venus.

Philosophically, the important aspect of this formulation is that we
are assigning probabilites to events thst could occur immediately, when
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the clairvoyant reveals his answers. Alsw we have avoided the awkward

considerations of sending our single spacecraft simaultaneously to both

planets or of generating hypothetical uriverses.

We now apply this probability ashignment by constructing the deci-

sion tree of Figure C.6. The initial chance node represents the clair-

voyant's revelation of one of the feu;' possible reports, each indicated

by the abbreviated report form on ine of the following branches. The

probabilities of Figure C.6 are 4ssigned to these reports. Following

each report we must make the be-At decision using the values in Figure C.I.

Having made the decision indicated by the arrows, we find that the ex-

pected value with clairvoyance--but before the clairvoyant reveals his

answer.--is 65.84. Subtracting the 56 'nit value of the primary decision

(without clairvoyance) yield a value of clairvoyance of 9.84.

4. Practical Probabili'y Assignment

It would be rare for experts to think in terms of joint probability

distributions such as those of Figure C.S. Normally, the experts will

have technical information organized in a way that is meaningful to them,

and It is desirable to construct the probability model in their terms.

A simple version of such a model is illustrated by the probability assign-

ment model of Figure C.7. Here the first question asked of the clair-

voyant Is, "Will the launch system, which is common to both destinations,

work?" The expert has assigned 0.65 to the answer "WORK". The next two

questions depend on the destination. The first is "If we launch success-

fully and send the spacecraft to Mars, will the landing systems work?"

The expert assigns a probability of 60/b5 to a positive answer. For the

corresponding Venus question, the expert also assigns a probability of

b0/65. (In general, these assignments need not be equal.) The expert

has also stated that given a successful launch, information about the

clairvoyant's report for the landing system for one destination will not

influence his pcobability assignment for the other destination: the prob-

ability assignments to these events are conditionally independent. From

this probability assignment model we can calculate the joint probability

distribution for the clairvoyant's report of success or failure for the 1
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the lairoyan wil reprt scces on oth lanes is

0.65 __0 6 __0._

65 60

6b DON'TFAILURE

I FAILURE

FIGURE C,7 PR9OBABILITY ASSIGNMENT MODEL

two possilb.e missions (see± Figure C.5). For example, the probability that

the clairvoyant will report success on both planets is:

0.65 t- 0.554
65 65

Figure C.7 is similar to what is commonly called the probability assign-

ment tree, except that these trees usually do not include possible depen-

dencies of probability assignments on decisions.

5. Further Implications of the Probability Assignment Model

The construction of a formal probability assignment model often

raises new, interesting and useful informational questions. While the
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value of clairvoyance on the uncertainties appearing In the primary dcci-

sion tree Is ain upper limit for the value of any corresponding informa-

tion gathering program, often the most feasible information gathering

programs are directly releted to the uncertainties aippearing In the prob-

ability assignment model. Thus, this mode natural ly leads to new andI

more practical infurmation valuation questions.

For example, In the space mission problem we may he able to conduct

exhaustive experiments on replicas of the launch system and make elabo-

rate tests on the actual launch vehicle. The value of clairvoyance on

the lauinch system alone is a st ra iht forward calculat ion from the infor-

Th optttnIn Figuire C.Hsosta the valune wi th c la irvovaIncr'

aviv cn b deive f om hemore pract hca lauinch system informat ion,IIt wo ebs ostart a realistic information-gatthering program with

a suyothlanhsystem.

6. IDecisl ~n lDependz'nt Clairvoyance

We may also3 wish to consider cla irvoyance for only one of the deel-

qlon alt whethves Fr wexawile. suppedorsaie i we ea end Ole spacecyrft.t

tell iso whtewexample, suppedorsaie I we snaend the: spacecrvaft

assignment model of Figure C.7 give uts all the Information wenedt

construct the tree for the value with c hi irvoyrntive about Mars. shown. In

Figure C.9. Once we got the clairvoyant's report on the success of the

Mars mission, we must recalculate tho! probablility of sucress on Venus

because of the dependency In our joint probability assignment (which

results from the common launch system). A report of a successful Mars

mission results In a revised probability of 0.923 for success on Venus.

A report of failure if we go to Mars revises the probability of failure

on Venus to 0.885. Using these probabilities, we find the expected4valuues shown In Figure C.9. Conteary to our Intuition, we find that a
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58.94

0SUCCESS s0
-0

0FAILURERE _1
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clairvoyant's report of a successful mars mission indicates that we

should send the mission to Venus, and that a report toat we will fail

on Mars indicates that we should send the mission Lo Mars.

Tuis Is the phenomenon of decision-dependent information. Informa-

tion abcutL one aspect of a probiem may have surprising implications for

Intuitively separate aspects of the problem due to dependencies in the

probabilistic informational structure. In complex problems, a formal

evaluation is the only way to determine the correct inferences and their

implications.

In order to capture these effects, the analysis must not only repre-

sent the primary problem structure (Figure C.1), but it must also capture

the informational structure in a formal model, (Figure C.7). In many proh-

lems the informational model may provide the more .atural and more pro-

ductive focus for onalysis. In the spacecraft example, we can drlve the

primary decision tree and all the informational trees from the single prob-

ability assignment model by adding only the decision-event chronology to

apply to each case. This approach to analysi:, might provide n key to more

effective computer aids to the model building process.

7. Unequal Decision-Dependent Probabilities

The calculations demonstrated above work equally well when the prob-

abties for succesons demnstand Venus are not equal. We can demonstrate

this facL by replacing the probabilities in Figure C.7 with a "launch

system working" probability of 0.75, a "Mars landing system works" prob-

ability of 70/75, and a "Venus landing system works" probability of 50/75.

In the primary decision tree of Figure C.1 this results in r "Mars suc-

cess" probability of 0.7 and a "Venus success" probability of 0.5. The

results with these new probability assignments, as well as the original

ones, appear in Table C.1 along with additional clairvoyance values for

the Venus mission only and for both landing systems.

8. Conclusion

We have seen that a probability assessment model built on the con-

cept of clairvoyance clarifies the interpretation and specification of

.1198
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probability assignments and precisely determJnes values of clairvoyance.
It also adds precision to the subjective interpt'etation and assessment

Table C.1

SUMMARY OF SPACE MISSION EXAMPLE NUMERICAL
RESULTS WITH ORIGINAL (EQUAL) PROBABILITIES

AND NEW (UNEQUAL) PROBABILITIES

Equal Unequal.

lairyoyance Probabilities Prcbabil.ties
About Value Value Value Value

with of with of

Nothing 56 0 45 0
Everything 65.84 9.84 64.33 19.33
Launch system 63 7.0 50 5
Landing system 59.38 3.38 61 16
Mars only 58.94 2.94 47.34 2.34
Venus only 65.84 9.84 64.33 19.33

of probability. In problems where uncertainty plays a key role, emphasis

on the construct ion of a formal iiformationa] model can clarify communi-

cation and lead to a more rapid and accurate solution. Further research

is o'eeded to develop a precise and convenient notational system for deal-

ing with probability assessment models. The existing inferential notational

systems are too cumbersome and the existing graphical representations are

Incomplete.
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Appendix D

THE VALUE OF SEQUENTIAL INFORMATION

Using decision analysis it is possible to calculate the value of one

of more pieces of information--called "observables"--when a decision must

be made In the face of uncertainty. This information has value because

it can affect the decision and lead te a better expected outcome. How-
ever, the possibility of buying information sequentially presents the de-

ciuion maker with a set of secondary decisons: which observables should

he buy and in which order should he buy tbem? It is possible that knowing

one observable affects not only the primary decision, but also the deci-

sion to buy additional information. In that case the value of knowing

the first observable is greater than it would be if it affected only the

primary decision. The prices of the observables affect the decision maker's

willingness to buy aditional informatioi,. For this reason the amount that

the value of learning each observable is increased by the possibility of
buying additional information depends on the prices of all the observables.

When the prices cf all the observables can be added to determine the

price of any combinat• . of observablcs and when all the prices are known

with certainty, we can formulate the general sequential-information prob-

lem in terms of a set of state variables (xI,...,x ) and a set ,,f observ-.

ables (y 1 ,...,yn) with a corresponding set of observable prices

(K ... ,K ). When an observable is equal to one of the state variables
Yl Yt-

it represents perfect information. However, by treating observables and

state variables separately, we can also deal with imperfect information.

To solve for the value of information when all of the observables

can be learned sequentially, we need to solve the decision tree shown in

Figire D.l. For a large decision problem it would be very difficult and

tedious to generate this decision tree. However, the tree has a very

repetitive structure that can be ?asily implemented as part of ar auto-

mated decision aid for generating decision trees. Instead of the entire
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tree shown in Figure D.I, the user specifies the decision tree that exists

when information cannot be purchased sequentially and then asks the com-

puter program to expand the tree to include oequential information.

The computer program starts the expanded decision tree with a deci-

sion node such as that shown at the left of Figure D.I. The alterna-

tives at this node are to buy any one of the specified set of observables

or proceed to the basic decision tree without buying information. The

last alternative leads directly to the basic decision tree specified by

the user. The other alternatives lead to chance nodes where the outcome

of the selected observable is revealed.

After a chance node where one of the observables is revealed, the

expanded decision tree contains a decision node where che alternatives

are Lo learn any of the specifid set of observables that have not been

learned previously or to buy no further information. Again, the last al-

ternative leads directly to the basic decisi.mn tree specified by the user,

r except that this tre, is now conditioned on the knowledge of one of the

observables. The computer program continues to generate the expanded de-

cision tree in this form until enough decision nodes are added to allow

the decision maker to learn any subset of the specified observables in A

any order before proce-ding to the primary decision problem.

By solving the decision tree in Figure D.1 several times using dif-

ferent prices for each of the observables, it is possible for an auto-

mated decision aid to map out decision regions such as those shown in

Figure D.2. Figure D).2 shows decision regions that might occur for two

observables.

We cannot regard the value of learning one observable by itself as

the maximum that we would be willing to pay for that piece on infonnation.

When it is possible to buy additional information sequentially, the value

of an observable may increase. To determine an upper bound for realistic

efforts designed to gather sequential information, we need a decision aid

that can generate and solve a decision tree like the one in Figure D.I.

Without this sort of aid, the problem structuring and computations are

sufficiently difficult to discourage analysts from calculating the value

of sequential information, even when the results might Influence information-

purchasing decinions.
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Appendix E

TIlE VALUE OF FLEXIBILITY

The notion that a good decision strategy is a flexible one han been

intuitively appreciated by deciion makers for a long time. Nearly

everyone is familiar with a story of a plan that went wrong because it

failed to adjust for some unforeseen circtimstnnce. Decision analysis

has had little to say on the subject of flexibility. However, recent

research on the concept of flexibility shows that this subject should

be incorporated In a decision morphology.

Roughly speaking, something is flexible if It can be easily vnried.

However, In the context of decision making, ease of variation may be

described by many different characteristics. Our point of view is that

the flexibility of a given decision variable is determined by the nature

of the choice set assocalted with that varlable. The larger the chole

set, the greater the decision flexibility. If the choice set consists

of a single point element, in other words if the decision has already

been committed, we say that the decision variable is inflexible.

A number of the classical micro-economic decision problems for which

flexibility is a concern may be treated within this framework. Merkhofer

(10] has shown that the problem of sizing a production facility can be

so analyzed.* The decision strategy of committing something less than

one's total resources so as to be prepared to meet unforeseen opportun-

ities may also be expressed as a problem of maintaining flexibility.

The value of flexibility is strongly dependent upon the information

that rmight be received during the decision process. The more a decision

maker expects to learn in the course of a decision, the more it pays to

*For discussion of this problem see Marschak and Nelson [91 and
Baumol [2J.
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follow flexible decision strategies. Similarly, the more flexible one's

decision strategy, the greater the value of information gathering. Thus,

the concepts of value of information and value of flexibility become

special cases of the more general concept of the value of information

given flexibility.

The value of information given flexibility measures the value to the

decision maker, in economic units, of obtaining a given amount of infor-

mation together with a given amount of decision flexibility. An upper

limit to this quantity is the expected value of perfect information given

perfect flexibility, EVPIGPF. Figure E.I illustrates the calculation of

the EVPIGPF in a decision tree.

Figure E.1 shows a one-stage decision problem. The decision

maker must set a number of decision variables, denoted d ,...,dm.

Subsequently the outcomes of a number of random variables, sl,..., s
n

become known. Once he has made his decision and the information concern-

ing the random variable is revealed, the decision maker does not have the

ability to go back and alter his decision settings. The structure of the

decision tree In Figure E.la implies that our decision maker will receive

no information prior to setting his decision variables.

Figure E.lb illu',trates tha same components of the decison problem

with perfect Informatiln on state variable si given perfect flexibility

on decision variable d . In this case the decision maker will learn

the i'th value of the state variable before he must set the J'th decision

variable. By calculating the maximum utility of the decision problems

illustrated in both parts of Figure E.1, the value of the information

given flexibility can be obtained. For an expected-value decision maker,

the EVPIGPF will be the difference between the expected values associated

with the two decision problems.

Thus, we see that calrulation of the EVPIGPF involves the rearrang-

ing of decision and state variable nodes in the problem's decision tree.

Therefore, the calculation of the value of flexibility, like the calcula-

tion of the value of information, is a tedious calculation.
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FIGURE E.1 A PORTION OF A DECISION STRUCTURE A

Assistance in the form of a computerized system for restructuring

decision trees would be useful for information and flexibility computa-

tions. With such an aid, the inalyst would spectfy the potential Infor-

niation variables and those decision variables chat could be sat In response

to that information. Tree restructuring would then be performed nutoma-

tically and the new decision structure evaluaL.id. The computed output

would be the expected value to the decision maker of obtaining that com-

bination of information and decision flexibility. This value would be

extremely useful to the decision maker for evaluating various proposed

information gathering and distribution systems.
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